Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T02:34:18.729Z Has data issue: false hasContentIssue false

Dualization of the van Douwen diagram

Published online by Cambridge University Press:  12 March 2014

Jacek Cichoń
Affiliation:
Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland, E-mail: jci@promat.com.pl
Adam Krawczyk
Affiliation:
Mathematical Institute, University of Warsaw, 00-901 Warsaw, Poland, E-mail: adamkra@mimuw.edu.pl
Barbara Majcher-Iwanow
Affiliation:
Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland, E-mail: ivanov@math.uni.wroc.pl
Bogdan Wȩglorz
Affiliation:
Mathematical Institute, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland Institute of Phisics, University of Opole, Oleska 48, 45-052 Opole, Poland, E-mail: weglorz@math.uni.wroc.pl

Abstract

We make a more systematic study of the van Douwen diagram for cardinal coefficients related to combinatorial properties of partitions of natural numbers.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brendle, J., Martin's Axiom and the dual distributivity number, preprint, 1998.Google Scholar
[2]Carlson, T.J. and Simpson, S.G., A dual form of Ramsey's theorem, Advances in Mathematics, vol. 53 (1984), pp. 265290.CrossRefGoogle Scholar
[3]Cichoń, J., Majcher, B., and Wȩglorz, B., Dualizations of van Douwen diagram, Acta Universitatis Carohnae Math, et Phis., vol. 33 (1992), pp. 2729.Google Scholar
[4]Halbeisen, L., On shattering, splitting and reaping partitions, Mathematical Logic Quarterly, vol. 44 (1998), pp. 123134.CrossRefGoogle Scholar
[5]Kamburelis, A. and Wȩglorz, B., Splittings, Archive for Mathematical Logic, vol. 35 (1996), pp. 263277.CrossRefGoogle Scholar
[6]Kunen, K., Set theory. An introduction to independence proofs, North-Holland, Amsterdam, 1980.Google Scholar
[7]Majcher, B., Orthogonal partitions, Acta Universitatis Carolinae Math, et Phis., vol. 31 (1990), pp. 5963.Google Scholar
[8]Matet, P., Partitions and filters, this Journal, vol. 51 (1986), pp. 1221.Google Scholar
[9]Shelah, S., Proper forcing, Springer-Verlag, New York, 1982.CrossRefGoogle Scholar
[10]Spinas, O., Partition numbers, Annals of Pure and Applied Logic, vol. 90 (1997), pp. 243262.CrossRefGoogle Scholar
[11]van Douwen, E.K., The integers and topology, Handbook of set-theoretic topology (Kunen, K. and Vaughan, J., editors), North-Holland, Amsterdam, 1984, pp. 111167.CrossRefGoogle Scholar
[12]Vaughan, J., Small uncountable cardinals and topology, Open problems in topology (van Mill, Jan and Reed, G., editors), Elsevier, 1990.Google Scholar