Article contents
Existence of prime elements in rings of generalized power series
Published online by Cambridge University Press: 12 March 2014
Abstract
The field K((G)) of generalized power series with coefficients in the field K of characteristic 0 and exponents in the ordered additive abelian group G plays an important role in the study of real closed fields. Conway and Gonshor (see [2, 4]) considered the problem of existence of non-standard irreducible (respectively prime) elements in the huge “ring” of omnific integers, which is indeed equivalent to the existence of irreducible (respectively prime) elements in the ring K((G≤0)) of series with non-positive exponents. Berarducci (see [1]) proved that K((G≤0)) does have irreducible elements, but it remained open whether the irreducibles are prime i.e., generate a prime ideal. In this paper we prove that K((G≤0)) does have prime elements if G = (ℝ, +) is the additive group of the reals, or more generally if G contains a maximal proper convex subgroup.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2001
References
REFERENCES
- 7
- Cited by