Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T12:58:34.898Z Has data issue: false hasContentIssue false

Fields of finite Morley rank

Published online by Cambridge University Press:  12 March 2014

Frank Wagner*
Affiliation:
Institut Girard Desargues, Université Claude Bernard (Lyon-1), Mathématiques, Bâtiment 101, 43 Boulevard Du 11 Novembre 1918, 69622 Villeurbanne-Cedex, France, E-mail: wagner@desargues.univ-lyonl.fr

Abstract

If K is a field of finite Morley rank, then for any parameter set AKeq the prime model over A is equal to the model-theoretic algebraic closure of A. A field of finite Morley rank eliminates imaginaries. Simlar results hold for minimal groups of finite Morley rank with infinite acl(∅).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Borovik, A. and Nesin, A.., Groups of finite morley rank, Oxford University Press, Oxford, United Kingdom, 1994.CrossRefGoogle Scholar
[2]Pillay, A., Model theory of algebraically closed fields, Model theory and algebraic geometry (Bouscaren, E., editor), Lecture Notes in Mathematics, no. 1696, Springer Verlag, Berlin, Germany, 1998.Google Scholar
[3]Poizat, B. P., Groupes stables, Nur Al-Mantiq Wal-Ma'rifah, 1987.Google Scholar
[4]Wagner, F. O., Subgroups of stable groups, this Journal, vol. 55 (1990), pp. 151156.Google Scholar
[5]Wagner, F. O., Stable groups, London Mathematical Society Lecture Notes, no. 240, Cambridge University Press, Cambridge, United Kingdom, 1997.CrossRefGoogle Scholar