Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T19:38:05.887Z Has data issue: false hasContentIssue false

Generalized high degrees have the complementation property

Published online by Cambridge University Press:  12 March 2014

Noam Greenberg
Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14853, USA, E-mail: erlkonig@math.cornell.edu
Antonio Montalbán
Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14853, USA, E-mail: antonio@math.cornell.edu
Richard A. Shore
Affiliation:
Department of Mathematics, Cornell University, Ithaca, New York 14853, USA, E-mail: shore@math.cornell.edu

Abstract.

We show that if dGH1 then (≤ d) has the complementation property, i.e., for all a < d there is some b < d such that ab = 0 and ab = d.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cooper, S. B., Minimal degrees and the jump operator, this Journal, vol. 38 (1973), pp. 249–271.Google Scholar
[2]Epstein, R. L., Minimal degrees of unsolvability and the full approximation construction, Memoirs of the American Mathematical Society, vol. 3 (1975), no. 1, 162.CrossRefGoogle Scholar
[3]Epstein, R. L., Initial segments of degrees below 0, Memoirs of the American Mathematical Society, vol. 30 (1981), no. 241.CrossRefGoogle Scholar
[4]Friedberg, R., A criterion for completeness of degrees of unsolvability, this Journal, vol. 22 (1957), pp. 159–160.Google Scholar
[5]Ishmukhamktov, S., Weak recursive degrees and a problem of Spector, Recursion theory and complexity (Kazan, 1997), de Gruyter Series on Logic and its Applications, vol. 2, de Gruyter, Berlin, 1999, pp. 81–87.Google Scholar
[6]Jocksuch, C. G. Jr., and Posner, D. B., Double jumps of minimal degrees, this Journal, vol. 43 (1978), no. 4, pp. 715–724.Google Scholar
[7]Jockusch, C. G. Jr., Simple proofs of some theorems on high degrees of unsolvability, Canadian Journal of Mathematics, vol. 29 (1977), no. 5, pp. 1072–1080.CrossRefGoogle Scholar
[8]Jockusch, C. G. Jr. and Shore, R. A., Pseudojump operators. II. Transfinite iterations, hierarchies and minimal covers, this Journal, vol. 49 (1984), no. 4, pp. 1205–1236.Google Scholar
[9]Kleene, S. C. and Post, E. L., The upper semi-lattice of the degrees of recursive unsolvability, Annals of Mathematics, vol. 59 (1954), pp. 379–407.CrossRefGoogle Scholar
[10]Lerman, M., Degrees of unsolvability, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.CrossRefGoogle Scholar
[11]Lerman, M., On the ordering of classes in high/low hierarchies, Recursion theory week (Oberwolfach, 1984) (Ebbinghaus, H.D., Müller, G.H., and Sacks, G.E., editors), Lecture Notes in Mathematics, vol. 1141, Springer-Verlag, Berlin, 1985, pp. 260–270.Google Scholar
[12]Lerman, M., Degrees which do not bound minimal degrees, Annals of Pure and Applied Logic, vol. 30 (1986), no. 3, pp. 249–276.CrossRefGoogle Scholar
[13]Lewis, A. E. M., Aspects of complementing in the Turing degrees, Ph.D. thesis, University of Leeds, 2003.Google Scholar
[14]Martin, D. A., Classes of recursively enumerable sets and degrees of unsolvability, Zeitschrift für mathematische Logik und die Grundlagen der Mathematik, vol. 12 (1966), pp. 295–310.Google Scholar
[15]Miller, W. and Martin, D. A., The degrees of hyperimmune sets, Zeitschrift für mathematische Logik und die Grundlagen der Mathematik vol. 14 (1968), pp. 159–166.Google Scholar
[16]Nies, A., Shore, R. A., and Slaman, T. A., Interpretability and definability in the recursively enumerable degrees, Proceedings of the London Mathematical Society (3), vol. 77 (1998), no. 2. pp. 241–291.CrossRefGoogle Scholar
[17]Posner, D. B., High degrees, Ph. D. thesis, University of California, Berkeley, 1977.Google Scholar
[18]Posner, D. B., The upper semilattice of degrees < 0′ is complemented, this Journal, vol. 46 (1981), no. 4, pp. 705–713.Google Scholar
[19]Posner, D. B. and Robinson, R. W., Degrees joining to 0′, this Journal, vol. 46 (1981), pp. 714–722.Google Scholar
[20]Robinson, R. W., Degrees joining 0, Notices of the American Mathematical Society, vol. 19 (1972), pp. A–615.Google Scholar
[21]Sacks, G. E., A minimal degree less than 0′, Bulletin of the American Mathematical Society, vol. 67 (1961), pp. 416–419.CrossRefGoogle Scholar
[22]Sasso, L. P. Jr., A minimal degree not realizing least possible jump, this Journal, vol. 39 (1974), pp. 571–574.Google Scholar
[23]Shore, R. A. and Slaman, T. A., Defining the Turing jump, Mathematical Research Letters, vol. 6 (1999), no. 5–6, pp. 711–722.CrossRefGoogle Scholar
[24]Slaman, T. A. and Steel, J. R., Complementation in the Turing degrees, this Journal, vol. 54 (1989), no. 1, pp. 160–176.Google Scholar