Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T03:05:49.721Z Has data issue: false hasContentIssue false

Generic substitutions

Published online by Cambridge University Press:  12 March 2014

Giovanni Panti*
Affiliation:
Department of Mathematics, University of Udine, Via Delle Scienze 208, 33100 Udine, Italy, E-mail: panti@dimi.uniud.it

Abstract

Up to equivalence, a substitution in propositional logic is an endomorphism of its free algebra. On the dual space, this results in a continuous function, and whenever the space carries a natural measure one may ask about the stochastic properties of the action. In classical logic there is a strong dichotomy: while over finitely many propositional variables everything is trivial, the study of the continuous transformations of the Cantor space is the subject of an extensive literature, and is far from being a completed task. In many-valued logic this dichotomy disappears: already in the finite-variable case many interesting phenomena occur, and the present paper aims at displaying some of these.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Aglianò, P. and Panti, G., Geometrical methods in Wajsberg hoops, Journal of Algebra, vol. 256 (2002), pp. 352374.CrossRefGoogle Scholar
[2]Baker, K., Free vector lattices, Canadian Journal of Mathematics, vol. 20 (1968), pp. 5866.CrossRefGoogle Scholar
[3]Beynon, W. M., Combinatorial aspects of piecewise linear functions, Journal of the London Mathematical Society, vol. 7 (1974), pp. 719727.CrossRefGoogle Scholar
[4]Beynon, W. M., Applications of duality in the theory of finitely generated lattice-ordered abelian groups, Canadian Journal of Mathematics, vol. XXIX (1977), no. 2, pp. 243254.CrossRefGoogle Scholar
[5]Bigard, A., Keimel, K., and Wolfenstein, S., Groupes et anneaux réticulés, Lecture Notes in Mathematics, vol. 608, Springer-Verlag, 1977.CrossRefGoogle Scholar
[6]Billingsley, P., Ergodic theory and information, John Wiley & Sons. Inc., New York, 1965.Google Scholar
[7]Birkhoff, G., Lattice theory, 3rd ed., American Mathematical Society Colloqium Publications, vol. 25, American Mathematical Society, Providence, RI, 1967.Google Scholar
[8]Blok, W. J. and Ferreirim, I. M. A., On the structure of hoops, Algebra Universalis, vol. 43 (2000), no. 2–3, pp. 233257.CrossRefGoogle Scholar
[9]Blok, W. J. and Pigozzi, D., Algebraizable logics, vol. 77, Memoirs of the American Mathematical Society, no. 396, American Mathematical Society, Providence, RI, 1989.Google Scholar
[10]Burris, S. and Sankappanavar, H. P., A course in universal algebra, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, 1981.CrossRefGoogle Scholar
[11]Cignoli, R., D'Ottaviano, I., and Mundici, D., Algebraic foundations of many-valued reasoning, Trends in Logic, vol. 7, Kluwer, 2000.CrossRefGoogle Scholar
[12]Cignoli, R. and Mundici, D., An elementary proof of Chang's completeness theorem for the infinite-valued calculus of Łukasiewicz, Studia Logica, vol. 58 (1997), no. 1, pp. 7997.CrossRefGoogle Scholar
[13]Cignoli, R. and Mundici, D., An invitation to Chang's MV algebras, Advances in algebra and model theory (Essen, 1994; Dresden, 1995), Gordon and Breach, Amsterdam, 1997, pp. 171197.Google Scholar
[14]Cignoli, R. and Torrens, A., Free cancellative hoops, Algebra Universalis, vol. 43 (2000), pp. 213216.CrossRefGoogle Scholar
[15]Cornfeld, I. P., Fomin, S. V., and Sinaĭ, Ya. G., Ergodic theory, Grundlehren der Mathematischen Wissenschaften, vol. 245, Springer-Verlag, 1982.CrossRefGoogle Scholar
[16]Darnel, M. R., Theory of lattice-ordered groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 187, Dekker, 1995.Google Scholar
[17]de Melo, W. and van Strien, S., One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 25, Springer-Verlag, 1993.CrossRefGoogle Scholar
[18]Di Nola, A., Grigolia, R., and Panti, G., Finitely generated free MV-algebras and their automorphism groups, Studia Logica, vol. 61 (1998), no. 1, pp. 6578.CrossRefGoogle Scholar
[19]Di Nola, A. and Lettieri, A., Equational characterization of all varieties of MV-algebras, Journal of Algebra, vol. 221 (1999), no. 2, pp. 463474.CrossRefGoogle Scholar
[20]Dummett, M., A propositional calculus with denumerable matrix, this Journal, vol. 24 (1959), no. 2, pp. 97106.Google Scholar
[21]Effros, E. G., Dimensions and C*-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, American Mathematical Society, Providence, RI, 1981.CrossRefGoogle Scholar
[22]Fuchs, L., Partially ordered algebraic systems, Oxford University Press, 1963.Google Scholar
[23]Giordano, T., Putnam, I. F., and Skau, C. F., Topological orbit equivalence and C*-crossed products, Journal für die Reine und Angewandte Mathematik, vol. 469 (1995), pp. 51111.Google Scholar
[24]Gumm, H. P. and Ursini, A., Ideals in universal algebras, Algebra Universalis, vol. 19 (1984), pp. 4554.CrossRefGoogle Scholar
[25]Hájek, P., Metamathematics of fuzzy logic. Trends in Logic, vol. 4, Kluwer, 1998.CrossRefGoogle Scholar
[26]Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, 5th ed., Oxford University Press, 1985.Google Scholar
[27]Herman, R. H., Putnam, I. F., and Skau, C. F., Ordered Bratteli diagrams, dimension groups and topological dynamics, International Journal of Mathematics, vol. 3 (1992), no. 6, pp. 827864.CrossRefGoogle Scholar
[28]Hochster, M., Prime ideal structure in commutative rings. Transactions of the American Mathematical Society, vol. 142 (1969), pp. 4360.CrossRefGoogle Scholar
[29]Horn, A., Free L-algebras, this Journal, vol. 34 (1969), pp. 475480.Google Scholar
[30]Kitchens, B. P., Symbolic dynamics, Springer-Verlag, 1998.CrossRefGoogle Scholar
[31]Komori, Y., Super-Łukasiewicz propositional logic, Nagoya Mathematical Journal, vol. 84 (1981), pp. 119133.CrossRefGoogle Scholar
[32]Lasota, A. and Mackey, M. C., Chaos, fractals, and noise, second ed., Applied Mathematical Sciences, vol. 97, Springer-Verlag, 1994.CrossRefGoogle Scholar
[33]Lind, D. and Marcus, B., An introduction to symbolic dynamics and coding, Cambridge University Press, 1995.CrossRefGoogle Scholar
[34]McNaughton, R., A theorem about infinite-valued sentential logic, this Journal, vol. 16 (1951), pp. 113.Google Scholar
[35]Montagna, F., The free BL-algebra on one generator, Neural Network World, vol. 5 (2000), pp. 837844.Google Scholar
[36]Mundici, D., Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, Journal of Functional Analysis, vol. 65 (1986), pp. 1563.CrossRefGoogle Scholar
[37]Mundici, D., Farey stellar subdivisions, ultrasimplicial groups, and K0 of AF C*-algebras. Advances in Mathematics, vol. 68 (1988), no. 1, pp. 2339.CrossRefGoogle Scholar
[38]Mundici, D., Free products in the category of abelian ℓ-groups with strong unit, Journal of Algebra, vol. 113 (1988), no. 1, pp. 89109.CrossRefGoogle Scholar
[39]Mundici, D., Normal forms in infinite-valued logic: the case of one variable, Computer science logic (Berne, 1991) (Börger, E. et al., editors), Lecture Notes in Computer Science, vol. 626, Springer-Verlag, 1992, pp. 272277.CrossRefGoogle Scholar
[40]Mundici, D., A constructive proof of McNaughton's theorem in infinite-valued logic, this Journal, vol. 59 (1994), pp. 596602.Google Scholar
[41]Mundici, D. and Pasquetto, M., A proof of the completeness of the infinite-valued calculus of Łukasiewicz with one variable, Non classical logics and their applications (Höhle, U. and Klement, E. P., editors), Kluwer, 1994.Google Scholar
[42]Oxtoby, J. C. and Ulam, S. M., Measure-preserving homeomorphisms and metrical transitivity, Annals of Mathematics, vol. 42 (1941), pp. 874920.CrossRefGoogle Scholar
[43]Panti, G., A geometric proof of the completeness of the Łukasiewicz calculus, this Journal, vol. 60 (1995), no. 2, pp. 563578.Google Scholar
[44]Panti, G., La logica infinito-valente di Łukasiewicz, Ph. D. thesis, Department of Mathematics, University of Siena, 1995, available from the author's home page.Google Scholar
[45]Panti, G., Multi-valued logic, Quantified representation of uncertainty (Gabbay, D. and Smets, P., editors), Handbook of Defensible Reasoning and Uncertainty Management Systems, vol. 1, Kluwer, 1998, pp. 2574.CrossRefGoogle Scholar
[46]Panti, G., Prime ideals in free ℓ-groups and free vector lattices. Journal of Algebra, vol. 219 (1999), no. 1, pp. 173200.CrossRefGoogle Scholar
[47]Panti, G., Varieties of MV-algebras, Journal of Applied Non-Classical Logics, vol. 9 (1999), no. 1, pp. 141157.CrossRefGoogle Scholar
[48]Pollicott, M. and Yuri, M., Dynamical systems and ergodic theory, London Mathematical Society Student Texts, vol. 40, Cambridge University Press, 1998.CrossRefGoogle Scholar
[49]Post, E. L., Introduction to a general theory of propositions, American Journal of Mathematics, vol. 43 (1921), pp. 163185. reprinted in [52].CrossRefGoogle Scholar
[50]Priestley, H. A., Spectral sets, Journal of Pure and Applied Algebra, vol. 94 (1994), no. 1, pp. 101114.CrossRefGoogle Scholar
[51]Rosen, K. H., Elementary number theory andits applications, fourth ed., Addison-Wesley, 2000.Google Scholar
[52]van Heijenoort, J. (editor), From Frege to Gödel, Harvard University Press, 1967.Google Scholar
[53]Walters, P., An introduction to ergodic theory. Graduate Texts in Mathematics, vol. 79, Springer-Verlag, 1982.CrossRefGoogle Scholar