No CrossRef data available.
Article contents
Generix strikes again
Published online by Cambridge University Press: 12 March 2014
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1989
References
RÉFÉRENCES
Ambos-Spies, Klaus, Fleischhack, Hans and Huwig, Hagen [1984], Diagonalizations over polynomial time computable sets, Abteilung Informatik, Universität Dortmund, Dortmund.Google Scholar
Angluin, D. [1980], On counting problems and the polynomial-time hierarchy, Theoretical Computer Science, vol. 12, pp. 161–173.CrossRefGoogle Scholar
Baker, Theodore, Gill, John and Solovay, Robert [1975], Relativizations of the question, SIAM Journal on Computing, vol. 4, pp. 431–442.CrossRefGoogle Scholar
Baker, Theodore and Selman, John [1979], A second step toward the polynomial hierarchy, Theoretical Computer Science, vol. 8, pp. 177–187.CrossRefGoogle Scholar
Bennett, Charles H. and Gill, John [1981], Relative to a random oracle A, PA ≠ NPA ≠ co-NPA with probability 1. SIAM Journal on Computing, vol. 10, pp. 96–113.CrossRefGoogle Scholar
Dowd, Martin [1982], Forcing and the P hierarchy, preprint, Rutgers University, New Brunswick, New Jersey.Google Scholar
Kozen, Dexter and Machtey, Michael [1980], On relative diagonal, preprint, I.B.M. Watson Research Center, Yorktown Heights, New York.Google Scholar
Mehlhorn, K. [1976], Polynomial and abstract subrecursive classes, Proceedings of the Seventeenth IEEE Symposium on Foundations of Computer Science, pp. 96–109.Google Scholar
Poizat, Bruno [1981], Degrés de définissabilité arithmétique des génériques, Comptes Rendus des Séances de l'Académie des Sciences, Série I: Mathématique, vol. 293, pp. 289–291.Google Scholar
Yao, Andrew Chih Chih [1985], Separating the polynomial time hierarchy by oracles, Proceedings of the Twenty-sixth Annual IEEE Symposium on Foundations of Computer Science, pp. 1–10.Google Scholar