Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T19:21:47.417Z Has data issue: false hasContentIssue false

Hausdorff measure on o-minimal structures

Published online by Cambridge University Press:  12 March 2014

A. Fornasiero
Affiliation:
Institut für Mathematische Logik, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62. 48149 Münster, Germany, E-mail: antongiulio.fornasiero@googlemail.com
E. Vasquez Rifo
Affiliation:
Instituto de Matemática y Física, Universidad de Talca, Talca, Chile, E-mail: evasquez@inst-mat.utalca.cl

Abstract

We introduce the Hausdorff measure for definable sets in an o-minimal structure, and prove the Cauchy–Crofton and co-area formulae for the o-minimal Hausdorff measure. We also prove that every definable set can be partitioned into “basic rectifiable sets”, and that the Whitney arc property holds for basic rectifiable sets.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[B004] Berarducci, A. and Otero, M.. An additive measure in o-minimal expansions of fields. The Quarterly Journal of Mathematics, vol. 55 (2004). no. 4. pp. 411419.CrossRefGoogle Scholar
[BP98] Baisalov, Y. and Poizat, B., Paires de structures o-minirnales. this Journal, vol. 63 (1998). no. 2, pp. 570578.Google Scholar
[Dries98] van Den Dries, L., Tame topology and o-minimal structures. London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press. Cambridge. 1998.Google Scholar
[Dries03] van Den Dries, L., Limit sets in o-minimal structures. O-minimal Structures, Proceedings of the RAAG Summer School Lisbon 2003 (Edmundo, M., Richardson, D., and Wilkie, A., editors). Lecture Notes in Real Algebraic and Analytic Geometry, Cuvillier Verlag. 2005.Google Scholar
[Halmos50] Halmos, P. R., Measure Theory, D. Van Nostrand Company, Inc., New York, 1950.Google Scholar
[K92] Kurdyka, K., On a subanalytic stratification satisfying a Whitney property with exponent 1. Real algebraic geometry proceedings (Rennes, 1991). Lecture Notes in Mathematics, vol. 1524, Springer, Berlin, 1992. pp. 316322.Google Scholar
[M09] Maříková, J., The structure on the real field generated by the standard part map on an o-minimal expansion of a real closed field, Israel Journal of Mathematics, vol. 171 (2009), pp. 175195.Google Scholar
[MillerO1] Miller, C., Expansions of dense linear orders with the intermediate value property, this Journal, vol. 66 (2001). no. 4. pp. 17831790.Google Scholar
[Morgan88] Morgan, F., Geometric measure theory, Academic Press Inc., 1988. An introduction to Federer's book by the same title.Google Scholar
[P08] Pawłucki, W., Lipschitz cell decomposition in o-minimal structures. I, Illinois Journal of Mathematics, vol. 52 (2008). no. 3, pp. 10451063.CrossRefGoogle Scholar
[PW06] Pila, J. and Wilkie, A. J., The rational points of a definable set, Duke Mathematical Journal. vol. 133 (2006), no. 3, pp. 591616.Google Scholar
[VR06] Rifo, E. Vasquez, Geometric partitions of definable sets, Ph.D. thesis, The University of Wisconsin-Madison, 08 2006.Google Scholar
[W00] Warner, F., Foundations of differentiable manifolds and lie groups. Springer-Verlag, 2000.Google Scholar