Published online by Cambridge University Press: 12 March 2014
We consider ωn-automatic structures which are relational structures whose domain and relations are accepted by automata reading ordinal words of length ωn for some integer n ≥ 1. We show that all these structures are ω-tree-automatic structures presentable by Muller or Rabin tree automata. We prove that the isomorphism relation for ω2-automatic (resp. ωn-automatic for n > 2) boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups) is not determined by the axiomatic system ZFC. We infer from the proof of the above result that the isomorphism problem for ωn-automatic boolean algebras, n ≥ 2, (respectively, rings, commutative rings, non commutative rings, non commutative groups) is neither a -set nor a -set. We obtain that there exist infinitely many ωn-automatic, hence also ω-tree-automatic, atomless boolean algebras , which are pairwise isomorphic under the continuum hypothesis CH and pairwise non isomorphic under an alternate axiom AT, strengthening a result of [14].
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.