Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T22:31:24.705Z Has data issue: false hasContentIssue false

The hierarchy theorem for generalized quantifiers

Published online by Cambridge University Press:  12 March 2014

Lauri Hella
Affiliation:
Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), 00014University of Helsinki, Finland, E-mail: hella@cc.helsinki.fi
Kerkko Luosto
Affiliation:
Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), 00014University of Helsinki, Finland, E-mail: kluosto@cc.helsinki.fi
Jouko Väänänen
Affiliation:
Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), 00014University of Helsinki, Finland, E-mail: jvaananen@cc.helsinki.fi

Abstract

The concept of a generalized quantifier of a given similarity type was defined in [12]. Our main result says that on finite structures different similarity types give rise to different classes of generalized quantifiers. More exactly, for every similarity type t there is a generalized quantifier of type t which is not definable in the extension of first order logic by all generalized quantifiers of type smaller than t. This was proved for unary similarity types by Per Lindström [17] with a counting argument. We extend his method to arbitrary similarity types.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Barwise, J. and Feferman, S. (editors), Model-theoretic logics, Springer-Verlag, 1985.Google Scholar
[2]Cai, J., Fürer, M., and Immerman, N., An optimal lower bound on the number of variables for graph identification, Combinatorial, vol. 12 (1992), pp. 389410.CrossRefGoogle Scholar
[3]Caicedo, X., Back-and-forth systems for arbitrary quantifiers, Mathematical logic in Latin America (Arruda, A. I., Chuaqui, R., and da Costa, N.C.A., editors), North-Holland, 1980, pp. 83102.Google Scholar
[4]Dawar, A., Generalized quantifiers and logical reducibilities, Journal of Logic and Computation, vol. 5 (1995), pp. 213226.CrossRefGoogle Scholar
[5]Fagin, R., The number of finite relational structures, Discrete Mathematics, vol. 19 (1977), pp. 1721.CrossRefGoogle Scholar
[6]Hella, L., Logical hierarchies in PTIME, Information and Computation, a preliminary version appeared in Proceedings of the 7th IEEE symposium on logic in computer science, 1992.Google Scholar
[7]Hella, L., Definability hierarchies of generalized quantifiers, Annals of Pure and Applied Logic, vol. 43 (1989), pp. 235271.CrossRefGoogle Scholar
[8]Hella, L. and Sandu, G., Partially ordered connectives and finite graphs, Quantifiers: Logics, models and computation (Krynicki, M., Mostowski, M., and Szczerba, L., editors), vol. II, Kluwer Academic Publishers, 1995, pp. 7988.CrossRefGoogle Scholar
[9]Hella, L., Väänänen, J., and Westerståhl, D., Definability ofpolyadic lifts of generalized quantifiers, to appear.Google Scholar
[10]Kolaitis, Ph. and Väänänen, J., Generalized quantifiers and pebble games on finite structures, Annals of Pure and Applied Logic, vol. 74 (1995), pp. 2375.CrossRefGoogle Scholar
[11]Krynicki, M., Lachlan, A., and Väänänen, J., Vector spaces and binary quantifiers, Notre Dame Journal of Formal Logic, vol. 25 (1984), pp. 7278.CrossRefGoogle Scholar
[12]Lindström, P., First order predicate logic with generalized quantifiers, Theoria, vol. 32 (1966), pp. 186195.CrossRefGoogle Scholar
[13]Luosto, K., Hierarchies of monadic generalized quantifiers, to appear.Google Scholar
[14]Nešetřil, J. and Väänänen, J., Combinatorics and quantifiers, Comment. Math. Univ. Carol., to appear.Google Scholar
[15]Väänänen, J., Remarks on generalized quantifiers and second-order logics, Set theory and hierarchy theory (Waszkiewicz, J., Wojciechowska, A., and Zarach, A., editors), vol. 14, Prace Naukowe Instytutu Matematyki Politechniki Wroclawskiej, Wroclaw, 1977, pp. 117123.Google Scholar
[16]Väänänen, J., A hierarchy theorem for Lindström quantifiers, Logic and abstraction (Furberg, M., Wetterström, T., and Åberg, C., editors), vol. 1, Acta Philosophica Gotheburgensia, 1986, pp. 317323.Google Scholar
[17]Westerståhl, D., personal communication.Google Scholar
[18]Väänänen, J., Quantifiers informal and natural languages, Handbook of philosophical logic (Gabbay, D. and Guenther, F., editors), vol. IV, D. Reidel, Dordrecht, 1989, pp. 1131.Google Scholar
[19]Väänänen, J., Iterated quantifiers, Dynamics, polarity and quantification (Kanazawa, M. and Pinon, C., editors), CSLI Publications, Stanford, 1994, pp. 173209.Google Scholar