Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T17:43:45.941Z Has data issue: false hasContentIssue false

Ideal convergence of bounded sequences

Published online by Cambridge University Press:  12 March 2014

Rafał Filipów
Affiliation:
Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland, E-mail: rfilipow@math.univ.gda.pl, URL: http://www.math.univ.gda.pl/~rfilipow
Nikodem Mrożek
Affiliation:
Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland, E-mail: nmrozek@math.univ.gda.pl
Ireneusz Recław
Affiliation:
Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland, E-mail: reclaw@math.univ.gda.pl, URL: http://www.math.univ.gda.pl/~reclaw
Piotr Szuca
Affiliation:
Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland, E-mail: pszuca@radix.com.pl

Abstract

We generalize the Bolzano-Weierstrass theorem (that every bounded sequence of reals admits a convergent subsequence) on ideal convergence. We show examples of ideals with and without the Bolzano-Weierstrass property, and give characterizations of BW property in terms of submeasures and extendability to a maximal P-ideal. We show applications to Rudin-Keisler and Rudin-Blass orderings of ideals and quotient Boolean algebras. In particular we show that an ideal does not have BW property if and only if its quotient Boolean algebra has a countably splitting family.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Balcar, B., Hernández-Hernández, F., and Hrušák, M., Combinatorics of dense subsets of the rationals, Fundamenta Mathematical vol. 183 (2004), no. 1, pp. 5980.CrossRefGoogle Scholar
[2]Balcerzak, Marek and Dems, Katarzyna, Some types of convergence and related Baire systems, Real Analysis Exchange, vol. 30 (2004/2005), no. 1, pp. 267276.CrossRefGoogle Scholar
[3]Baumgartner, J. E., Taylor, A. D., and Wagon, S., Structural properties of ideals, Polska Akademia Nauk. Instytut Matematyczny. Dissertationes Mathematicae. Rozprawy Matematyczne, vol. 197 (1982), p. 95.Google Scholar
[4]Bernstein, Allen R., A new kind of compactness for topological spaces, Fundamenta Mathematicae, vol. 66 (1969/1970), pp. 185193.CrossRefGoogle Scholar
[5]Boldjiev, B. and Malyhin, V., The sequentiality is equivalent to the F-Fréchet-Urysohn property, Commentationes Mathematicae Universitatis Carolinae, vol. 31 (1990), no. 1, pp. 2325.Google Scholar
[6]Demirci, Kamil, J-limit superior and limit inferior, Mathematical Communications, vol. 6 (2001), no. 2, pp. 165172.Google Scholar
[7]Farah, Ilijas, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Memoirs of the American Mathematical Society, vol. 148 (2000), no. 702.CrossRefGoogle Scholar
[8]Farah, Ilijas, How many Boolean algebras P(ℕ)/J are there?, Illinois Journal of Mathematics, vol. 46 (2002), no. 4, pp. 9991033.CrossRefGoogle Scholar
[9]Fast, H., Sur la convergence statistique, Colloquium Math., vol. 2 (1951), pp. 241244 (1952).CrossRefGoogle Scholar
[10]Fridy, J. A., Statistical limit points, Proceedings of the American Mathematical Society, vol. 118 (1993), no. 4, pp. 11871192.CrossRefGoogle Scholar
[11]Hernández-Hernández, F. and Hrušak, M., Cardinal invariants of analytic P-ideals.Google Scholar
[12]Just, Winfried and Krawczyk, Adam, On certain Boolean algebras P (ω)/I, Transactions of the American Mathematical Society, vol. 285 (1984), no. 1, pp. 411429.Google Scholar
[13]Just, Winfried and Mijajlović, Žarko, Separation properties of ideals over ω, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, vol. 33 (1987), no. 3, pp. 267276.CrossRefGoogle Scholar
[14]Katétov, Miroslav, Products of filters, Commentationes Mathematicae Universitatis Carolinae, vol. 9 (1968), pp. 173189.Google Scholar
[15]Kojman, Menachem, Hindman spaces, Proceedings of the American Mathematical Society, vol. 130 (2002), no. 6, pp. 15971602 (electronic).CrossRefGoogle Scholar
[16]Kojman, Menachem, Van der Waerden spaces, Proceedings of the American Mathematical Society, vol. 130 (2002), no. 3, pp. 631635 (electronic).CrossRefGoogle Scholar
[17]Kostyrko, Pavel, Šalát, Tibor, and Wilczyński, Władysław, J-convergence, Real Analysis Exchange, vol. 26 (2000/2001), no. 2, pp. 669685.CrossRefGoogle Scholar
[18]Louveau, Alain and Veličković, Boban, A note on Borel equivalence relations, Proceedings of the American Mathematical Society, vol. 120 (1994), no. 1, pp. 255259.CrossRefGoogle Scholar
[19]Mazur, Krzysztof, Fσ-ideals and ω1ω1*-gaps in the Boolean algebras P(ω)/I, Polska Akademia Nauk. Fundamenta Mathematicae, vol. 138 (1991), no. 2, pp. 103111.CrossRefGoogle Scholar
[20]Monk, J. Donald, Continuum cardinals generalized to Boolean algebras, this Journal, vol. 66 (2001), no. 4, pp. 19281958.Google Scholar
[21]Nuray, Fatih and Ruckle, William H., Generalized statistical convergence and convergence free spaces, Journal of Mathematical Analysis and Applications, vol. 245 (2000), no. 2, pp. 513527.CrossRefGoogle Scholar
[22]Rudin, Walter, Homogeneity problems in the theory ofČech compactifications, Duke Mathematical Journal, vol. 23 (1956), pp. 409419.CrossRefGoogle Scholar
[23]Šalát, Tibor, Tripathy, Binod Chandra, and Ziman, Miloš, On some properties of J-convergence, Tatra Mountains Mathematical Publications, vol. 28 (2004), pp. 279286.Google Scholar
[24]Shelah, Saharon, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982.CrossRefGoogle Scholar
[25]Solecki, Sławomir, Analytic ideals and their applications, Annals of Pure and Applied Logic, vol. 99 (1999), no. 1–3, pp. 5172.CrossRefGoogle Scholar