Article contents
MINIMUM MODELS OF SECOND-ORDER SET THEORIES
Published online by Cambridge University Press: 08 April 2019
Abstract
In this article I investigate the phenomenon of minimum and minimal models of second-order set theories, focusing on Kelley–Morse set theory KM, Gödel–Bernays set theory GB, and GB augmented with the principle of Elementary Transfinite Recursion. The main results are the following. (1) A countable model of ZFC has a minimum GBC-realization if and only if it admits a parametrically definable global well order. (2) Countable models of GBC admit minimal extensions with the same sets. (3) There is no minimum transitive model of KM. (4) There is a minimum β-model of GB+ETR. The main question left unanswered by this article is whether there is a minimum transitive model of GB+ETR.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © The Association for Symbolic Logic 2019
References
REFERENCES
- 3
- Cited by