Article contents
Model theory of strictly upper triangular matrix rings
Published online by Cambridge University Press: 12 March 2014
Extract
Two questions on rings of strictly upper triangular matrices arising from B. Rose's work [5] are answered in this paper. An n × n matrix (αi, j) is strictly upper triangular if αi, j = 0 whenever i ≥ j. The ring of strictly upper triangular n × n matrices with entries from a field F will be denoted by Sn(F). Throughout this paper n will be an integer greater than 2. B. Rose [5] has shown that the complete theory of Sn(F) for an algebraically closed field F is ℵ1categorical. The first main result of this paper is that the rings Sn(F) and Sn(K) for fields F and K are isomorphic or elementarily equivalent if and only if F and K are isomorphic or elementarily equivalent, respectively (Corollary 1.6 and Theorem 2.2). This result shortens the proof of B. Rose's categoricity theorem [5, Theorem 7] by avoiding the co-stability considerations; furthermore, this result yields a proof of the converse of this categoricity theorem. The second main result is that the theory of rings of strictly upper triangular n × n matrices over algebraically closed fields is the model-completion of the theory of rings of strictly upper triangular n × n matrices over arbitrary fields (Theorem 2.5). This answers affirmatively the two conjectures at the end of [5].
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1980
References
BIBLIOGRAPHY
- 4
- Cited by