Published online by Cambridge University Press: 12 March 2014
Let T be an inductive, first-order theory in a language L, let E(L) denote the set of existential L-formulas, and let E(T) denote the distributive lattice of equivalence-classes φT of formulas φ ∈ E(L) with respect to equivalence in T. We consider three types of ‘complements’ in E(T): Let φT, ψT ∈ E(T) and suppose φT ∏ ψT = 0. Then ψT is a complement of φT, if φT ∐ ψT = 1; ψT is a pseudo-complement of φT, if for all μT ∈ E(T), (φT ∐ ψT) = 0 implies μT ≤ ψT; ψT is a “weak complement of φT, if for all μT ∈ E(T), (φT ⋰ ψT) ∐ μT = 0 implies μT = 0. The following facts are obvious: A complement of φT is also a pseudo-complement of φT and a pseudo-complement of φT is also a weak complement of φT. Any φT has at most one pseudo-complement; it is denoted by φT*. The relations ‘ψT is the complement of φT’ and ‘ψT is a weak complement of φT’ are symmetrical. We call φT (weakly, pseudo-) complemented if φT has a (weak, pseudo-) complement, and we call E(T) (weakly, pseudo-) complemented if every φT is (weakly, pseudo-) complemented.
The object of this note is to characterize (weakly, pseudo-) complemented existential formulas in model-theoretic terms, and conversely to characterize some classical notions of Robinson style model theory in terms of these formulas. The following theorems illustrate the second approach.