Published online by Cambridge University Press: 12 March 2014
A  class is the set of paths through a computable tree. Given classes P and Q, P is Medvedev reducible to Q, P ≤MQ, if there is a computably continuous functional mapping Q into P. We look at the lattice formed by
 class is the set of paths through a computable tree. Given classes P and Q, P is Medvedev reducible to Q, P ≤MQ, if there is a computably continuous functional mapping Q into P. We look at the lattice formed by  subclasses of 2ω under this reduction. It is known that the degree of a splitting class of c.e. sets is non-branching. We further characterize non-branching degrees, providing two additional properties which guarantee non-branching: inseparable and hyperinseparable. Our main result is to show that non-branching iff inseparable if hyperinseparable if homogeneous and that all unstated implications do not hold. We also show that inseparable and not hyperinseparable degrees are downward dense.
 subclasses of 2ω under this reduction. It is known that the degree of a splitting class of c.e. sets is non-branching. We further characterize non-branching degrees, providing two additional properties which guarantee non-branching: inseparable and hyperinseparable. Our main result is to show that non-branching iff inseparable if hyperinseparable if homogeneous and that all unstated implications do not hold. We also show that inseparable and not hyperinseparable degrees are downward dense.
 classes, Archive for Mathematical Logic, vol. 42 (2003), no. 6, pp. 583–600.CrossRefGoogle Scholar
 classes, Archive for Mathematical Logic, vol. 42 (2003), no. 6, pp. 583–600.CrossRefGoogle Scholar classes—structure and applications, Computability theory and its applications (Boulder, CO, 1999), Contempory Mathematics, vol. 257, American Mathematics Society, Providence, RI, 2000, pp. 39–59.Google Scholar
 classes—structure and applications, Computability theory and its applications (Boulder, CO, 1999), Contempory Mathematics, vol. 257, American Mathematics Society, Providence, RI, 2000, pp. 39–59.Google Scholar classes in mathematics, Handbook of recursive mathematics, vol. 2, Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998, pp. 623–821.Google Scholar
 classes in mathematics, Handbook of recursive mathematics, vol. 2, Studies in Logic and the Foundations of Mathematics, vol. 139, North-Holland, Amsterdam, 1998, pp. 623–821.Google Scholar sets and models of WKL0, Reverse mathematics 2001 (Simpson, S. G., editor), Lecture Notes in Logic, vol. 21, ASL and AK Peters, 2005, pp. 352–378.Google Scholar
 sets and models of WKL0, Reverse mathematics 2001 (Simpson, S. G., editor), Lecture Notes in Logic, vol. 21, ASL and AK Peters, 2005, pp. 352–378.Google Scholar