Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T23:13:14.747Z Has data issue: false hasContentIssue false

A note on defining groups in stable structures

Published online by Cambridge University Press:  12 March 2014

Frank O. Wagner*
Affiliation:
Mathematisches Institut, Abteilung für Logik und Grundlagenforschung, Universität Freiburg, 79104 Freiburg, Deutschland
*
Mathematical Institute, 24-29 St. Giles, Oxford OX1 3LB, UK, E-mail: wagnes@maths.oxford.ac.uk

Abstract

If * is a binary partial function which happens to be a group law on some infinite subset of some model of a stable theory, then this subset can be embedded into a definable group such that * becomes the group operation.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Hru] Hrushovski, E., Contributions to stable model theory, Ph.D. Thesis , University of California at Berkeley, Berkeley, California, 1986.Google Scholar
[Pol] Poizat, B. P., Sous-groupes definissables d'un groupe stable, this Journal, vol. 48 (1981), pp. 137146.Google Scholar
[Po2] Poizat, B. P., Groupes stables, Nur al-Mantiq wal-Ma'rifah, Villeurbanne, 1987.Google Scholar
[Wa] Wagner, F. O., Subgroups of stable groups, this Journal, vol. 55 (1990), pp. 151156.Google Scholar