Published online by Cambridge University Press: 12 March 2014
Let λ be an ordinal less than or equal to an infinite cardinal κ. For S ⊂ κ, [S]λ denotes the collection of all order type λ subsets of S. A set X ⊂ [κ]λ will be called Ramsey iff there exists p ∈ [κ]κ such that either [p]λ ⊂ X or [p]λ ∩ X = ∅. The set p is called homogeneous for X.
The infinite Ramsey theorem implies that all subsets of [ω]n are Ramsey for n < ω. Using the axiom of choice, one can define a non-Ramsey subset of [ω]ω. In [GP], Galvin and Prikry showed that all Borel subsets of [ω]ω are Ramsey, where one topologizes [ω]ω as a subspace of Baire space. Silver [S] proved that analytic sets are Ramsey, and observed that this is best possible in ZFC.
When κ > ω, the assertion that all subsets of [κ]n are Ramsey is a large cardinal hypothesis equivalent to κ being weakly compact (and strongly inaccessible). Again, is not possible in ZFC to have all subsets of [κ]ω Ramsey. The analogy to the Galvin-Prikry theorem mentioned above was established by Kleinberg, extending work by Kleinberg and Shore in [KS]. The set [κ]ω is given a topology as a subspace of κω, which has the usual product topology, κ taken as discrete. It was shown that all open subsets of [κ]ω are Ramsey iff κ is a Ramsey cardinal (that is, κ → (κ)<ω).
In this note we examine the spaces [κ]λ for κ ≥ λ ≥ ω. We show that κ Ramsey implies all open subsets of [κ]λ are Ramsey for λ < κ, and that if κ is measurable, then all open subsets of [κ]κ are Ramsey. Let us remark here that we can with the same methods prove these results with “κ-Borel” in the place of “open”, where the κ-Borel sets are the smallest collection containing the opens and closed under complementation and intersections of length less than κ. Also, although here we consider just subsets of [κ]λ, it is no more difficult to show that partitions of [κ]λ into less than κ many κ-Borel sets have, under the appropriate hypothesis, size κ homogeneous sets.