Published online by Cambridge University Press: 12 March 2014
We prove here that the intuitionistic theory T0↾ + UMIDN. or even EETJ↾ + UMIDN, of Explicit Mathematics has the strength of –CA0. In Section 1 we give a double-negation translation for the classical second-order μ-calculus, which was shown in [Mö02] to have the strength of –CA0. In Section 2 we interpret the intuitionistic μ-calculus in the theory EETJ↾ + UMIDN. The question about the strength of monotone inductive definitions in T0 was asked by S. Feferman in 1982, and — assuming classical logic — was addressed by M. Rathjen.