Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T22:59:29.775Z Has data issue: false hasContentIssue false

ON THE RADICALS OF A GROUP THAT DOES NOT HAVE THE INDEPENDENCE PROPERTY

Published online by Cambridge University Press:  12 August 2016

CÉDRIC MILLIET*
Affiliation:
UNIVERSITÄT KONSTANZ FACHBEREICH MATEMATIK UND STATISTIK 78457 KONSTANZ, GERMANY PÔLE DE MATHÉMATIQUES DE L’INSA DE LYON BÂTIMENT LÉONARD DE VINCI – 21 AVENUE JEAN CAPELLE 69621 VILLEURBANNE, FRANCE E-mail: cedric.milliet@insa-lyon.fr

Abstract

We give an example of a pure group that does not have the independence property, whose Fitting subgroup is neither nilpotent nor definable and whose soluble radical is neither soluble nor definable. This answers a question asked by E. Jaligot in May 2013.

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altınel, T. and Baginski, P., Definable Envelopes of Nilpotent Subgroups of Groups with Chain Conditions on Centralizers . Proceedings of the American Mathematical Society, vol. 142 (2014), no. 5, pp. 14971506.Google Scholar
Baudisch, A., On superstable groups . Journal of the London Mathematical Society (2), vol. 42 (1990), no. 3, pp. 452464.Google Scholar
Brenner, J., The linear homogeneous group . Annals of Mathematics (2), vol. 39 (1938), no. 2, pp. 472493.Google Scholar
Dieudonné, J., La Géométrie Des Groupes Classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 5, Springer-Verlag, Berlin, 1955.Google Scholar
Derakhshan, J. and Wagner, F. O., Nilpotency in groups with chain conditions . Quarterly Journal of Mathematics, vol. 48 (1997), no. 192, pp. 453466.Google Scholar
Keisler, H. J., The ultraproduct construction , Ultrafilters Across Mathematics, Contemporary Mathematics, vol. 530, American Mathematical Society, Providence, RI, 2010, pp. 163179.CrossRefGoogle Scholar
Klingenberg, W., Linear groups over local rings . Bulletin of the American Mathematical Society, vol. 66 (1960), pp. 294296.Google Scholar
Matthews, L., The Independence Property in Unstable Algebraic Structures I: p-Adically Closed Fields , unpublished preprint, 1993.Google Scholar
Macpherson, D. and Tent, K., Pseudofinite groups with NIP theory and definability in finite simple groups , Groups and Model Theory, Contemporary Mathematics, vol. 576, American Mathematical Society, Providence, RI, 2012, pp. 255267.Google Scholar
Houcine, A. O., A remark on the definability of the Fitting subgroup and the soluble radical . Mathematical Logic Quarterly, vol. 59 (2013), no. 1–2, pp. 6265.Google Scholar
Wagner, F. O., The Fitting subgroup of a stable group . Journal of Algebra, vol. 174 (1995), no. 2, pp. 599609.Google Scholar
Wagner, F. O., Nilpotency in groups with the minimal condition on centralizers . Journal of Algebra, vol. 217 (1999), no. 2, pp. 448460.Google Scholar