Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T18:39:47.942Z Has data issue: false hasContentIssue false

A proof procedure for quantification theory

Published online by Cambridge University Press:  12 March 2014

W. V. Quine*
Affiliation:
Harvard University

Extract

The purpose of this paper is to present and justify a simple proof procedure for quantification theory. The procedure will take the form of a method for proving a quantificational schema to be inconsistent, i.e., satisfiable in no non-empty universe. But it serves equally for proving validity, since we can show a schema valid by showing its negation inconsistent.

Method A, as I shall call it, will appear first, followed by a more practical adaptation which I shall call B. The soundness and completeness of A will be established, and the equivalence of A and B. Method A, as will appear, is not new.

The reader need be conversant with little more than the fairly conventional use (as in [8]) of such terms as ‘quantificational schema’, ‘interpretation’, ‘valid’, ‘consistent’, ‘prenex’, and my notation (as in [7]) of quasi-quotation.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1955

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bernays, Paul and Schönfinkel, Moses, Zum Entscheidungsproblem der mathematischen Logik, Mathematische Annalen, vol. 99 (1928), pp. 342372.CrossRefGoogle Scholar
[2]Dreben, Burton, On the completeness of quantification theory, Proceedings of the National Academy of Sciences, vol. 38 (1952), pp. 10471052.CrossRefGoogle ScholarPubMed
[3]Gödel, Kurt, Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monatshefte für Mathematik und Physik, vol. 37 (1930), pp. 349360.CrossRefGoogle Scholar
[4]Hilbert, David and Bernays, Paul, Grundlagen der Mathematik, vol. 2, Berlin (Springer), 1939, Ann Arbor (Edwards), 1944, pp. 233, 157 ff.Google Scholar
[5]Kleene, S. C., Introduction to metamathematics, Amsterdam (North Holland Pub. Co.), Groningen (Noordhoff), and New York (Van Nostrand), 1952, pp. 389393.Google Scholar
[6]Löwenheim, Leopold, Über Möglichkeiten im Relativkalkül, Mathematische Annalen, vol. 76 (1915), pp. 447470; specifically, pp. 451 f.CrossRefGoogle Scholar
[7]Quine, W. V., Mathematical logic, New York, 1940; revised edition, Cambridge, Mass. (Harvard University Press), 1951.Google Scholar
[8]Quine, W. V., Methods of logic, New York (Holt), 1950.Google Scholar
[9]Quine, W. V., Interpretations of sets of conditions, this Journal, vol. 19 (1954), pp. 97102; specifically, p. 101.Google Scholar
[10]Skolem, Thoralf, Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweisbarheit mathematischer Sätze, Skrifter utgit av Videnskapsselskapet i Kristiania, I. mat.-naturvid. klasse 1920, no. 4, 36 pp.; specifically, pp. 7–9.Google Scholar