Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T18:24:43.334Z Has data issue: false hasContentIssue false

The proof-theoretic analysis of transfinitely iterated fixed point theories

Published online by Cambridge University Press:  12 March 2014

Gerhard JÄger
Affiliation:
Institut für Informatik und Angewandte Mathematik, Universität Bern, Neubrückstrasse 10, Ch-3012 Bern, Switzerland E-mail: jaeger@iam.unibe.ch
Reinhard Kahle
Affiliation:
Universitüt Tübingen, Wsi, Sand 13, D-72076 Tübingen, Germany E-mail: kahle@informatik.uni-tuebingen.de
Anton Setzer
Affiliation:
Department of Mathematics, Uppsala University, P.O. Box 480, S-751 06 Uppsala., Sweden E-mail: setzer@math.uu.se
Thomas Strahm
Affiliation:
Institut Für Informatik und Angewandte Mathematik, Universitüt Bern, Neubrückstrasse 10, Ch-3012 Bern, Switzerland E-mail: strahm@iam.unibe.ch

Abstract

This article provides the proof-theoretic analysis of the transfinitely iterated fixed point theories and ; the exact proof-theoretic ordinals of these systems are presented.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Buchholz, W., Feferman, S., Pohlers, W., and Sieg, W., Iterated inductive definitions and subsystems of analysis: Recent proof-theoretical studies, Lecture Notes in Mathematics, vol. 897, Springer-Verlag, Berlin, 1981.Google Scholar
[2]Cantini, A., A note on a predicatively reducible theory of iterated elementary induction, Bollettino Unione Mathematica Italiana 4-B, vol. 6 (1985), pp. 413–430.Google Scholar
[3]Cantini, A., Notes on formal theories of truth, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 35 (1989), pp. 97–130.CrossRefGoogle Scholar
[4]Cantini, A., Logical frameworks for truth and abstraction, North-Holland, Amsterdam, 1996.Google Scholar
[5]Feferman, S., Iterated inductive fixed-point theories: application to Hancock's conjecture, The Patras symposion (Metakides, G., editor), North-Holland, Amsterdam, 1982, pp. 171–196.Google Scholar
[6]Feferman, S., Reflecting on incompleteness, this Journal, vol. 56 (1991), no. 1, pp. 1–49.Google Scholar
[7]Jäger, G. and Strahm, T., Fixed point theories and dependent choice, Archive for Mathematical Logic, to appear.Google Scholar
[8]Jäger, G. and Strahm, T., Some theories with positive induction of ordinal strength φω0, this Journal, vol. 61 (1996), no. 3, pp. 818–842.Google Scholar
[9]Kahle, R., Applicative theories and Frege structures, Ph.D. thesis, Institut für Informatik und angewandte Mathematik, Universität Bern, 1997.Google Scholar
[10]Marzetta, M. and Strahm, T., The μ quantification operator in explicit mathematics with universes and iterated fixed point theories with ordinals, Archive for Mathematical Logic, vol. 37 (1998), pp. 391–413.CrossRefGoogle Scholar
[11]Palmgren, E., On universes in type theory, Twenty-five years of type theory (Sambin, G. and Smith, J., editors), Oxford University Press, to appear.Google Scholar
[12]Pohlers, W., Proof theory: An introduction, Lecture Notes in Mathematics, vol. 1407, Springer-Verlag, Berlin, 1988.Google Scholar
[13]Rathjen, M., The strength of Martin-Löf type theory with a superuniverse, Part I, preprint, 1997.Google Scholar
[14]Schütte, K., Kennzeichnung von Ordnungszahlen durch rekursiv erklärte Funktionen, Mathematische Annalen, vol. 127 (1954), pp. 15–32.CrossRefGoogle Scholar
[15]Schütte, K., Proof theory, Springer-Verlag, Berlin, 1977.CrossRefGoogle Scholar
[16]Strahm, T., First steps into metapredicativity in explicit mathematics, to appear.Google Scholar