Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T01:58:27.095Z Has data issue: false hasContentIssue false

Quantifier elimination in valued Ore modules

Published online by Cambridge University Press:  12 March 2014

Luc Bélair
Affiliation:
Département de Mathématiques, Université du Québec-Uqam, Cp. 8888 Succ. Centre-Ville, Montréal, Québec, H3C 3P8, Canada. E-mail: belair.luc@uqam.ca
Françoise Point
Affiliation:
Institut de Mathématique, Université de Möns, Le Pentagone 20, Place du Parc, B-7000 Mons, Belgium. E-mail: point@logique.jussieu.fr

Abstract

We consider valued fields with a distinguished isometry or contractive derivation as valued modules over the Ore ring of difference operators. Under certain assumptions on the residue field, we prove quantifier elimination first in the pure module language, then in that language augmented with a chain of additive subgroups, and finally in a two-sorted language with a valuation map. We apply quantifier elimination to prove that these structures do not have the independence property.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adler, H., An introduction to theories without the independence property, to appear, http://www.amsta.leeds.ac.uk/~adler/.Google Scholar
[2]Ax, J., The elementary theory offinite fields, Annals of Mathematics, vol. 88 (1968), pp. 239271.CrossRefGoogle Scholar
[3]Azgin, S., Model theory of valued difference fields, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2007.Google Scholar
[4]Bélair, L., Types dans les corps values munis d'applications coefficients, Illinois Journal of Mathematics, vol. 43 (1999), no. 2, pp. 410425.CrossRefGoogle Scholar
[5]Bélair, L. and Macintyre, A., L'automorphisme de Frobenius des vecteurs de Witt, Comptes Rendus de l'Académie des Sciences de Paris. Série I, vol. 331 (2000), no. 1, pp. 14.Google Scholar
[6]Bélair, L., Macintyre, A., and Scanlon, T., Model theory of the Frobenius on the Witt vectors, American Journal of Mathematics, vol. 129 (2007), pp. 665721.CrossRefGoogle Scholar
[7]Bélair, L. and Point, F., Élimination des quantificateurs dans les équations aux différences linéaires sur les vecteurs de Witt, Comptes Rendus de l'Académie des Sciences de Paris. Série I, vol. 346 (2008), pp. 703706.Google Scholar
[8]Blum, L., Cucker, F., Shub, M., and Smale, S., Complexity and real computation, Springer-Verlag, New York, 1998.CrossRefGoogle Scholar
[9]Cohn, P. M., Skew fields, Encyclopedia of Mathematics and its Applications, vol. 57, Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[10]Dellunde, P., Delon, F., and Point, F., The theory of modules of separably closedfields. II, Annals of Pure and Applied Logic, vol. 129 (2004), pp. 181210.CrossRefGoogle Scholar
[11]van den Dries, L., Quantifier elimination for linear formulas over ordered and valued fields, Proceedings of the Model Theory Meeting (Univ. Brussels, Brussels/Univ. Mons, Mons, 1980), vol. 33, 1981, pp. 1931.Google Scholar
[12]Goodearl, K. R. and Warfield, R. B. Jr., An introduction to noncommutative rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989.Google Scholar
[13]Gurevich, Y. and Schmitt, P. H., The theory of ordered abelian groups does not have the independence property, Transactions of the American Mathematical Society, vol. 284 (1984), no. 1, pp. 171182.CrossRefGoogle Scholar
[14]Hellegouarch, Y., Modules de Drinfeld généralisés, Approximations Diophantiennes et Nombres Transcendants (Luminy, 1990) (Philippon, P., editor), de Gruyter, Berlin, 1992, pp. 123164.Google Scholar
[15]Hellegouarch, Y. and Recher, F., Generalized t-modules, Journal of Algebra, vol. 187 (1997), pp. 323372.CrossRefGoogle Scholar
[16]Hodges, W., Model theory, Cambridge University Press, Cambridge, 1993.CrossRefGoogle Scholar
[17]Hrushovski, E. and Point, F., On von Neumann regular rings with an automorphism, Journal of Algebra, vol. 315 (2007), pp. 76120.CrossRefGoogle Scholar
[18]Jacobson, N., Basic algebra. I, second ed., W. H. Freeman and Company, New York, 1985.Google Scholar
[19]Jacobson, N., Basic algebra. II, second ed., W. H. Freeman and Company, New York, 1989.Google Scholar
[20]Kaplansky, I., Selected papers and other writings, Springer-Verlag, New York, 1995.CrossRefGoogle Scholar
[21]Karpinski, M. and Macintyre, A., Approximating volumes and integrals in o-minimal and p-minimal theories, Connections between model theory and algebraic and analytic geometry, vol. 6, Dipartimento di Matematica, Seconda Universita di Napoli, Caserta, 2000, pp. 149177.Google Scholar
[22]Magid, A. R., Lectures on differential Galois theory, University Lecture Series, vol. 7, American Mathematical Society, Providence, RI, 1994.Google Scholar
[23]Michaux, C. and Rivière, C., Quelques remarques concernant la théorie des corps ordonnés différentiellement clos, Bulletin of the Belgian Mathematical Society. Simon Stevin, vol. 12 (2005), pp. 341348.CrossRefGoogle Scholar
[24]Poizat, B., Cours de théorie des modèles, Nur Al-Mantiq Wal-Ma'rifah, 1985.Google Scholar
[25]Prest, M., Model theory and modules, vol. 130, Cambridge University Press, Cambridge, 1988.CrossRefGoogle Scholar
[26]Priess-Crampe, S. and Ribenboim, P., Differential equations over valued fields (and more), Journal für die Reine und Angewandte Mathematik, vol. 576 (2004), pp. 123147.Google Scholar
[27]Rohwer, T., Valued difference fields as modules over twisted polynomial rings, Ph.D. thesis, University of Illinois at Urbana-Champaign, 2003.Google Scholar
[28]Scanlon, T., Quantifier elimination for the relative Frobenius, Valuation theory and its applications, Vol. II (proceedings of the first international conference on valuation theory, saskatoon 1999) (Kuhlmann, F.-V.et al., editors), Fields Institute Communications, vol. 33, American Mathematical Society, Providence, RI, 2003, pp. 323352.Google Scholar
[29]Weispfenning, V., Quantifier elimination and decision procedures for valued fields, Models and sets (Aachen, 1983), Lecture Notes in Mathematics, vol. 1103, Springer, Berlin, 1984, pp. 419472.CrossRefGoogle Scholar