Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T08:01:17.356Z Has data issue: false hasContentIssue false

The role of parameters in bar rule and bar induction

Published online by Cambridge University Press:  12 March 2014

Michael Rathjen*
Affiliation:
Institut für Mathematische Logik und Grundlagenforschung, Westfälische Wilhelms-Universität Münster, W-4400 Münster, Germany

Abstract

For several subsystems of second order arithmetic T we show that the proof-theoretic strength of T + (bar rule) can be characterized in terms of T + (bar induction), where the latter scheme arises from the scheme of bar induction by restricting it to well-orderings with no parameters. In addition, we demonstrate that , ACA0 + (bar rule) and ACA0 + (bar induction) prove the same -sentences.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brown, D. and Simpson, S. G., Which set existence axioms are needed to prove the separable Hahn-Banach theorem, Annals of Pure and Applied Logic, vol. 31 (1986), pp. 123144.CrossRefGoogle Scholar
[2]Buchholz, W. and Schütte, K., Proof theory of impredicative subsystems of analysis, Bibliopolis, Napoli, 1988.Google Scholar
[3]Cantini, A., On the relation between choice and comprehension principles in second order arithmetic, this Journal, vol. 51 (1986), pp. 360373.Google Scholar
[4]Feferman, S., Formal theories for transfinite iterations of generalized inductive definitions and some subsystems of analysis, Intuitionism and proof theory (Kino, A.et al., editors), North-Holland, Amsterdam, 1970, pp. 303325.Google Scholar
[5]Feferman, S., Theories of finite type related to mathematical practice, Handbook of mathematical logic (Barwise, J., editor), North-Holland, Amsterdam, 1977, pp. 913971.CrossRefGoogle Scholar
(6) Feferman, S., A more perspicuous formal system for predicativity, Konstruktionen versus Positionen, Vol. I, Walter de Gruyter, Berlin, 1978, pp. 6893.CrossRefGoogle Scholar
[7]Feferman, S. and Jäger, G., Choice principles, the bar rule and autonomously iterated comprehension schemes in analysis, this Journal, vol. 48 (1983), pp. 6370.Google Scholar
[8]Feferman, S. and Sieg, W., Iterated inductive definitions and subsystems of analysis, in Buchholz, W.et al., Iterated inductive definitions and subsystems of analysis: recent proof-theoretical studies, Lecture Notes in Mathematics, vol. 897, Springer-Verlag, Berlin, 1981, pp. 1677.Google Scholar
[9]Friedman, H., Systems of second order arithmetic and their use, Proceedings of the International Congress of Mathematicians (Vancouver, 1974), Vol. 1, Canadian Mathematical Congress, Montréal, 1975, pp. 235242.Google Scholar
[10]Friedman, H., Simpson, S. G. and Smith, R. L., Countable algebra and set existence axioms, Annals of Pure and Applied Logic, vol. 25 (1983), pp. 141181.CrossRefGoogle Scholar
[11]Girard, J.-Y., Proof theory and logical complexity, Bibliopolis, Napoli, 1987.Google Scholar
[12]Hinman, P. G., Recursion-theoretic hierarchies, Springer-Verlag, Berlin, 1978.CrossRefGoogle Scholar
[13]Kreisel, G., A survey of proof theory, this Journal, vol. 33, (1968), pp. 321388.Google Scholar
[14]Jäger, G., Theories for admissible sets: A unifying approach to proof theory, Bibliopolis, Napoli, 1986.Google Scholar
[15]Kaye, R., Paris, J. and Dimitracopoulos, C., On parameter free induction schemas, this Journal, vol. 53 (1988), pp. 10821097.Google Scholar
[16]Rathjen, M., Untersuchungen zu Teilsystemen der Zahlentheorie zweiter Stufe und der Mengenlehre mit einer zwischen -CA und -CA + BI liegenden Beweisstärke, Report, Institut für Mathematische Logik und Grundlagenforschung, Westfalische Wilhelms-Universität Münster, Münster, 1989.Google Scholar
[17]Schütte, K., Proof theory, Springer-Verlag, Berlin, 1977.CrossRefGoogle Scholar
[18]Schwichtenberg, H., Some applications of cut elimination, Handbook of mathematical logic (Barwise, J., editor), North-Holland, Amsterdam, 1977, pp. 868895.Google Scholar
[19]Takeuti, G., Proof theory, North-Holland, Amsterdam, 1975.Google Scholar