Article contents
Sequential discreteness and clopen-I-Boolean classes
Published online by Cambridge University Press: 12 March 2014
Extract
Kantorovich and Livenson [6] initiated the study of infinitary Boolean operations applied to the subsets of the Baire space and related spaces. It turns out that a number of interesting collections of subsets of the Baire space, such as the collection of Borel sets of a given type (e.g. the F σ sets) or the collection of analytic sets, can be expressed as the range of an ω-ary Boolean operation applied to all possible ω-sequences of clopen sets. (Such collections are called clopen-ω-Boolean.) More recently, the ranges of I-ary Boolean operations for uncountable I have been considered; specific questions include whether the collection of Borel sets, or the collection of sets at finite levels in the Borel hierarchy, is clopen-I-Boolean.
The main purpose of this paper is to give a characterization of those collections of subsets of the Baire space (or similar spaces) that are clopen-I-Boolean for some I. The Baire space version can be stated as follows: a collection of subsets of the Baire space is clopen-I-Boolean for some I iff it is nonempty and closed downward and σ-directed upward under Wadge reducibility, and in this case we may take I = ω 2. The basic method of proof is to use discrete subsets of spaces of the form K 2 to put a number of smaller clopen-I-Boolean classes together to form a large one. The final section of the paper gives converse results indicating that, at least in some cases, ω 2 cannot be replaced by a smaller index set.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1987
References
REFERENCES
- 1
- Cited by