No CrossRef data available.
Article contents
SET FORCING AND STRONG CONDENSATION FOR H(ω2)
Published online by Cambridge University Press: 13 March 2015
Abstract
The Axiom of Strong Condensation, first introduced by Woodin in [14], is an abstract version of the Condensation Lemma of L. In this paper, we construct a set-sized forcing to obtain Strong Condensation for H(ω2). As an application, we show that “ZFC + Axiom of Strong Condensation + ”is consistent, which answers a question in [14]. As another application, we give a partial answer to a question of Jech by proving that “ZFC + there is a supercompact cardinal + any ideal on ω1 which is definable over H(ω2) is not precipitous” is consistent under sufficient large cardinal assumptions.
- Type
- Articles
- Information
- Copyright
- Copyright © The Association for Symbolic Logic 2015