Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T21:34:48.153Z Has data issue: false hasContentIssue false

The Sheffer functions of 3-valued logic

Published online by Cambridge University Press:  12 March 2014

Norman M. Martin*
Affiliation:
Willow Run Research Center, Ypsilanti, Michigan, U.S.A.

Extract

In previous papers, Post, Webb, Götlind and the present author have described some Sheffer functions (in Swift's terminology, “independent binary generators”) in m-valued logic. Professor J. Dean Swift has recently isolated the symmetric Sheffer functions of 3-valued logic. In the present paper, we will prove some properties of Sheffer functions in m-valued logic and isolate all of the Sheffer functions of 3-valued logic.

Before we proceed we will define some terms which we will find convenient. A set of functions in m-valued logic is functionally complete, if the set of the functions which can be defined explicitly from the functions of the set is exactly the set of all functions of m-valued logic. A function is functionally complete, if its unit set is functionally complete. A Sheffer function is a two-place functionally complete function. If i and j are truth values (1 i, jm), we will say i ~ j (D), if D is a decomposition of the truth values 1, …, m into 2 or more disjoint non-empty classes and i and j are elements of the same class. A binary function f(p, q) satisfies the substitution law for a decomposition D, if for any truth values h, i, j, k, whenever h ~ j (D) and i~k(D), then f(h, i) ~ f(j, k) (D). The function f(p,q) satisfies the co-substitution law for D, if for any truth values h, i, j, k, whenever f(h, i) ~ f(j, k) (D), then h ~ j (D) or i ~ k (D). We will say f(p, q) has the proper substitution property, if there is a decomposition of the truth values into less than m classes for which it satisfies the substitution law.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1954

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Götlind, Erik, Some Sheffer functions in n-valued logic, Portugaliae mathematicae, vol. 11 (1952), pp. 141149.Google Scholar
[2]Kalicki, Jan, A test for the equality of truth-tables, this Journal, vol. 17 (1952), pp. 161163.Google Scholar
[3]Łoś, Jerzy, O matrycach logicznych (On logical matrices), Prace Wroclawskiego Towarzystwa Naukowego, series B, no. 19, Wrocław 1949, 42 pp.Google Scholar
[4]Martin, Norman M., Some analogues of the Sheffer stroke function in n-valued logic, Indagationes mathematicae, vol. 12 (1950), pp. 373400.Google Scholar
[5]Martin, Norman M., A note on Sheffer functions in n-valued logic, Methodos, vol. 3 (1951), pp. 240242.Google Scholar
[6]Martin, Norman M., Sheffer functions and axiom sets in m-valued propositional logic, Ph. D. thesis (University of California at Los Angeles, 1952).Google Scholar
[7]Myhill, John R., A complete theory of natural, rational, and real numbers, this Journal, vol. 15 (1950), pp. 185196. See Errata, ibid., p. iv.Google Scholar
[8]Piccard, Sophie, Sur les fonctions définies dans les ensembles finis quelconque, Fundamenta mathematica, vol. 24 (1935), pp. 183185.CrossRefGoogle Scholar
[9]Post, Emil L., Introduction to a general theory of elementary propositions, American journal of mathematics, vol. 43 (1921), pp. 163185.CrossRefGoogle Scholar
[10]Rose, Alan, Review of [4], this Journal, vol. 16 (1951), pp. 275276.Google Scholar
[11]Słupecki, Jerzy, Kryterium pełności wielowartościowych systemów logiki zdań (A criterion of fullness of many-valued systems of propositional logic), Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III, vol. 32 (1939), pp. 102109.Google Scholar
[12]Swift, J. Dean, Algebraic properties of n-valued propositional calculi, American mathematical monthly, vol. 59 (1952), pp. 612621.CrossRefGoogle Scholar
[13]Webb, Donald L., Generation of any n-valued logic by one binary operator, Proceedings of the National Academy of Sciences, vol. 21 (1935), pp. 252254.CrossRefGoogle Scholar
[14]Webb, Donald L., Definition of Post's generalized negative and maximum in terms of one binary operator, Bulletin of the American Mathematical Society, vol. 58 (1936), pp. 193194.Google Scholar