Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T08:00:51.208Z Has data issue: false hasContentIssue false

THE ${\text{\Sigma }}_1 $-PROVABILITY LOGIC OF $HA^{\text{*}} $

Published online by Cambridge University Press:  12 July 2019

MOHAMMAD ARDESHIR
Affiliation:
DEPARTMENT OF MATHEMATICAL SCIENCES SHARIF UNIVERSITY OF TECHNOLOGY TEHRAN, IRANE-mail: mardeshir@sharif.ir
MOJTABA MOJTAHEDI
Affiliation:
DEPARTMENT OF MATHEMATICS STATISTICS AND COMPUTER SCIENCE COLLEGE OF SCIENCES, UNIVERSITY OF TEHRAN TEHRAN, IRANE-mail: mojtahedi@ut.ac.ir

Abstract

For the Heyting Arithmetic HA, $HA^{\text{*}} $ is defined [14, 15] as the theory $\left\{ {A|HA \vdash A^\square } \right\}$, where $A^\square $ is called the box translation of A (Definition 2.4). We characterize the ${\text{\Sigma }}_1 $-provability logic of $HA^{\text{*}} $ as a modal theory $iH_\sigma ^{\text{*}} $ (Definition 3.17).

Type
Articles
Copyright
Copyright © The Association for Symbolic Logic 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ardeshir, M. and Mojtahedi, M., Reduction of provability logics to ${\text{\Sigma }}_1 $-provability logics. Logic Journal of IGPL, vol. 23 (2015), no. 5, pp. 842847.Google Scholar
Ardeshir, M. and Mojtahedi, M., The ${\text{\Sigma }}_1 $-provability logic of HA . Annals of Pure and Applied Logic, vol. 169 (2018), no. 10, pp. 9971043.Google Scholar
Artemov, S. and Beklemishev, L., Provability logic, Handbook of Philosophical Logic, vol. 13 (Gabbay, D. and Guenthner, F., editors), second ed., Springer, Amsterdam, 2004, pp. 189360.Google Scholar
Friedman, H., The disjunction property implies the numerical existence property. Proceedings of the National Academy of Sciences of the United States of America, vol. 72 (1975), no. 8, pp. 28772878.Google Scholar
Gödel, K., Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik, vol. 38 (1931), no. 1, pp. 173198.Google Scholar
Gödel, K., Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse eines mathematischen Kolloquiums, vol. 4 (1933), pp. 3940. English translation in: Kurt Gödel Collected Works, vol. 1 ( et al. , editors), Oxford University Press, 1995, pp. 301–303.Google Scholar
Iemhoff, R., Provability logic and admissible rules, Ph.D. thesis, University of Amsterdam, 2001.Google Scholar
Leivant, D., Absoluteness in intuitionistic logic, Ph.D. thesis, University of Amsterdam, 1975.Google Scholar
Leivant, D., Absoluteness of Intuitionistic Logic, Mathematical Centre Tracts, vol. 73, Mathematisch Centrum, Amsterdam, 1979.Google Scholar
Löb, M., Solution of a problem of Leon Henkin, this Journal, vol. 20 (1955), no. 2, pp. 115118.Google Scholar
Myhill, J., A note on indicator-functions. Proceedings of the American Mathematical Society, vol. 39 (1973), pp. 181183.Google Scholar
Solovay, R. M., Provability interpretations of modal logic. Israel Journal of Mathematics, vol. 25 (1976), no. 3–4, pp. 287304.Google Scholar
Troelstra, A. S. and van Dalen, D., Constructivism in Mathematics. vol. I, Studies in Logic and the Foundations of Mathematics, vol. 121, North-Holland, Amsterdam, 1988.Google Scholar
Visser, A., Aspects of diagonalization and provability, Ph.D. thesis, Utrecht University, 1981.Google Scholar
Visser, A., On the completeness principle: A study of provability in Heyting’s arithmetic and extensions. Annals of Mathematical Logic, vol. 22 (1982), no. 3, pp. 263295.Google Scholar
Visser, A., Substitutions of $${\text{\Sigma }}_1^0 $ sentences: Explorations between intuitionistic propositional logic and intuitionistic arithmetic. Annals of Pure and Applied Logic, vol. 114 (2002), no. 1–3, pp. 227271. Commemorative Symposium Dedicated to Anne S. Troelstra (Noordwijkerhout, 1999).Google Scholar
Visser, A., van Benthem, J., de Jongh, D., and de Lavalette, G. R. R., NNIL, a study in intuitionistic propositional logic, Modal Logic and Process Algebra (Amsterdam, 1994) (Ponse, A., de Rijke, M., and Venema, Y., editors), CSLI Lecture Notes, vol. 53, CSLI Publications, Stanford, CA, 1995, pp. 289326.Google Scholar
Visser, A. and Zoethout, J., Provability logic and the completeness principle. Annals of Pure and Applied Logic, vol. 170 (2019), no. 6, pp. 718753.Google Scholar