Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T21:17:59.405Z Has data issue: false hasContentIssue false

Topological differential fields and dimension functions

Published online by Cambridge University Press:  12 March 2014

Nicolas Guzy
Affiliation:
Institut de Mathématique, Université de Mons, Le Pentagone, 20, Place du Parc, B-7000 Mons, Belgium, E-mail: Nicolas.Guzy@umons.ac.be
Françoise Point
Affiliation:
Institut de Mathématique, Université de Mons, Le Pentagone, 20, Place du Parc, B-7000 Mons, Belgium, E-mail: E-mail: point@math.univ-paris-diderot.fr

Abstract

We construct a fibered dimension function in some topological differential fields.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brihaye, T., Michaux, C., and Riviére, C., Cell decomposition and dimension function in the theory of closed ordered differential fields, Annals of Pure and Applied Logic, vol. 159 (2009), no. 12, pp. 111128.CrossRefGoogle Scholar
[2]Chang, C.C. and Keisler, H.J., Model theory, third ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North Holland, 1990.Google Scholar
[3]Delon, F., Quelques propriétés des corps values en théorie des modéles, Ph.D. thesis, Université de Paris 7, 1982.Google Scholar
[4]Ealy, C. and Onshuus, A., Characterizing rosy theories, this Journal, vol. 72 (2007), no. 3, pp. 919940.Google Scholar
[5]Guzy, N., 0-D-valued fields, this Journal, vol. 71 (2006), pp. 639660.Google Scholar
[6]Guzy, N. and Point, F., Topological differential fields, Annals of Pure and Applied Logic, vol. 161 (2010), no. 4, pp. 570598.CrossRefGoogle Scholar
[7]Hrushovski, E. and Scanlon, T., Lascar and Morley ranks differ in differentially closed fields, this Journal, vol. 64 (1999), no. 3, pp. 12801284.Google Scholar
[8]Jacobson, N., Basic algebra 2, W.H. Freeman and Company, San Francisco, 1980.Google Scholar
[9]Kirby, J., Exponential algebraicity in exponential fields, Bulletin of the London Mathematical Society, vol. 42 (2010), no. 5, pp. 879890.CrossRefGoogle Scholar
[10]Kolchin, E.R., Differential algebra and algebraic groups, Pure and Applied Mathematics, vol. 54, Academic Press, New-York, London, 1973.Google Scholar
[11]Macintyre, A., Exponential algebra, Logic and algebra (Pontignano, 1994), Lecture Notes in Pure and Applied Mathematics, vol. 180, Dekker, New York, 1996, pp. 191210.Google Scholar
[12]Marczewski, E., Independence and homomorphisms in abstract algebras, Fundamenta Mathematicae, vol. 50 (1961/1962), pp. 4561.CrossRefGoogle Scholar
[13]Marker, D., Model theory: an introduction, Graduate Texts in Mathematics, vol. 217, Springer, 2002.Google Scholar
[14]Pillay, A., First order topological structures and theories, this Journal, vol. 52 (1987), no. 3, pp. 763778.Google Scholar
[15]Pop, F., Embedding problems over large fields, Annals of Mathematics (2), vol. 144 (1996), no. 1, pp. 134.CrossRefGoogle Scholar
[16]Scanlon, T., A model complete theory of valued D-fields, this Journal, vol. 65 (2000), pp. 323352.Google Scholar
[17]Scanlon, T., Quantifier elimination for the relative Frobenius, Fields Institute Communications, vol. 33 (2003), pp. 323359.Google Scholar
[18]van den Dries, L., Dimension of definable sets, algebraic boundedness and henselian fields, Annals of Pure and Applied Logic, vol. 45 (1989), pp. 189209.CrossRefGoogle Scholar
[19]Wilkie, A.J., Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, Journal of the American Mathematical Society, vol. 9 (1996), no. 4, pp. 10511094.CrossRefGoogle Scholar