Article contents
Undecidability of the real-algebraic structure of models of intuitionistic elementary analysis
Published online by Cambridge University Press: 12 March 2014
Abstract
We show that true first-order arithmetic is interpretable over the real-algebraic structure of models of intuitionistic analysis built upon a certain class of complete Heyting algebras. From this the undecidability of the structures follows. We also show that Scott's model is equivalent to true second-order arithmetic. In the appendix we argue that undecidability on the language of ordered rings follows from intuitionistically plausible properties of the real numbers.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 2000
References
REFERENCES
[1]Cherlin, G., Rings of continuous functions: Decision problems, Model Theory of Algebra and Arithmetic (Dold, A. and Eckmann, B., editors), Lecture Notes in Mathematics 834, Springer-Verlag, Berlin, Heidelberg, New York, 1980, pp. 44–91.Google Scholar
[2]Dragalin, A.G., Mathematical Intuitionism: Introduction to Proof Theory, AMS, Providence, 1987.Google Scholar
[3]Erdélyi-Szabó, M., Undecidability of the real-algebraic structure of Scott's model, Mathematical Logic Quarterly, vol. 44 (1998), pp. 344–348.CrossRefGoogle Scholar
[5]Kleene, S.C. and Vesley, R.E., The Foundations of Intuitionistic Mathematics, North-Holland, Amsterdam, 1965.Google Scholar
[6]Krol, M.D., A topological model for intuitionistic analysis with Kripke's scheme, Z. Math. Logik Grundlag. Math., vol. 24 (1978), pp. 427–436.CrossRefGoogle Scholar
[7]Scott, D.S., Extending the topological interpretation to intuitionistic analysis, Compositio Math., vol. 20 (1968), pp. 194–210.Google Scholar
[8]Scowcroft, P., Some purely topological models for intuitionistic analysis, submitted to Annals of Pure and Applied Logic.Google Scholar
[9]Scowcroft, P., A new model for intuitionistic analysis, Annals of Pure and Applied Logic, vol. 47 (1990), pp. 145–165.CrossRefGoogle Scholar
[10]van Dalen, D., Intuitionistic logic, Handbook of Philosophical Logic, Vol. III (Gabbay, D. and Guenthner, F., editors), D. Reidel Publishing Company, 1986, pp. 225–339.Google Scholar
- 2
- Cited by