Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T15:24:11.287Z Has data issue: false hasContentIssue false

VARIATIONS ON $\Delta ^{1}_{1}$ DETERMINACY AND ω1

Part of: Set theory

Published online by Cambridge University Press:  07 January 2021

RAMEZ L. SAMI*
Affiliation:
DEPARTMENT OF MATHEMATICS UNIVERSITÉ DE PARIS 75205PARIS, CEDEX 13, FRANCEE-mail:sami@univ-paris-diderot.fr

Abstract

We consider a seemingly weaker form of $\Delta ^{1}_{1}$ Turing determinacy.

Let $2 \leqslant \rho < \omega _{1}^{\mathsf {CK}}$ , $\textrm{Weak-Turing-Det}_{\rho }(\Delta ^{1}_{1})$ is the statement:

Every $\Delta ^{1}_{1}$ set of reals cofinal in the Turing degrees contains two Turing distinct, $\Delta ^{0}_{\rho }$ -equivalent reals.

We show in $\mathsf {ZF}^-$ :

$\textrm{Weak-Turing-Det}_{\rho }(\Delta ^{1}_{1})$ implies: for every $\nu < \omega _{1}^{\mathsf {CK}}$ there is a transitive model ${M \models \mathsf {ZF}^{-} + \textrm{``}\aleph _{\nu } \textrm{ exists''.}}$

As a corollary:

  • If every cofinal $\Delta ^{1}_{1}$ set of Turing degrees contains both a degree and its jump, then for every $\nu < \omega_1^{\mathsf{CK}}$ , there is atransitive model: $M \models \mathsf{ZF}^{-} + \textrm{``}\aleph_\nu \textrm{ exists''.}$

  • With a simple proof, this improves upon a well-known result of Harvey Friedman on the strength of Borel determinacy (though not assessed level-by-level).

  • Invoking Tony Martin’s proof of Borel determinacy, $\textrm{Weak-Turing-Det}_{\rho }(\Delta ^{1}_{1})$ implies $\Delta ^{1}_{1}$ determinacy.

  • We show further that, assuming $\Delta ^{1}_{1}$ Turing determinacy, or Borel Turing determinacy, as needed:

    • Every cofinal $\Sigma ^{1}_{1}$ set of Turing degrees contains a “hyp-Turing cone”: ${\{x \in \mathcal {D} \mid d_{0} \leqslant _{T} x \leqslant _{h} d_{0} \}}$ .

    • For a sequence $(A_{k})_{k < \omega }$ of analytic sets of Turing degrees, cofinal in $\mathcal {D}$ , $\bigcap _{k} A_{k}$ is cofinal in $\mathcal {D}$ .

Type
Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Presented at the 12th Panhellenic Logic Symposium—Crete, June 2019.

References

Barwise, J., Admissible Sets and Structures , Springer-Verlag, New-York, 1975.10.1007/978-3-662-11035-5CrossRefGoogle Scholar
Devlin, K. J., Construtibility , Handbook of Mathematical Logic (Jon Barwise, editor), North-Holland, Amsterdam, 1977, pp. 453490.10.1016/S0049-237X(08)71110-8CrossRefGoogle Scholar
Friedman, H. M., Higher set theory and mathematical practice . Annals of Mathematical Logic , vol. 2 (1971), no. 3, pp. 325357.10.1016/0003-4843(71)90018-0CrossRefGoogle Scholar
Jensen, R. B., The fine structure of the constructible hierarchy . Annals of Mathematical Logic , vol. 4 (1971), no. 3, pp. 229308.10.1016/0003-4843(72)90001-0CrossRefGoogle Scholar
Kechris, A. S., Classical Descriptive Set Theory , Springer-Verlag, New-York, 1995.10.1007/978-1-4612-4190-4CrossRefGoogle Scholar
Martin, D. A., The axiom of determinacy and reduction principles in the analytical hierarchy . Bulletin of the American Mathematical Society , vol. 74 (1968), no. 4, pp. 687689.10.1090/S0002-9904-1968-11995-0CrossRefGoogle Scholar
Martin, D. A., Borel determinacy . Annals of Mathematics , vol. 102 (1975), no. 2, pp. 363371.10.2307/1971035CrossRefGoogle Scholar
Martin, D. A., Proof of a conjecture of Friedman . Proceedings of the American Mathematical Society , vol. 55 (1976), no. 1, p. 129.10.1090/S0002-9939-1976-0406785-9CrossRefGoogle Scholar
Martin, D. A., Determinacy of Infinitely Long Games , Book draft, to appear, https://www.math.ucla.edu/~dam/D.A._Martin_Determinacy_of_Infinitely_Long_Games.pdf.Google Scholar
Montalbán, A. and Shore, R. A., The limits of determinacy in second-order arithmetic . Proceedings of the London Mathematical Society , vol. 104 (2012), no. 2, pp. 223252.10.1112/plms/pdr022CrossRefGoogle Scholar
Moschovakis, Y. N., Descriptive Set Theory , 2nd ed., American Mathematical Society, Rhode Island, 2009.10.1090/surv/155CrossRefGoogle Scholar
Sami, R. L., Questions in descriptive set theory and the determinacy of infinite games , Ph.D. thesis, University of California, Berkeley, 1976.Google Scholar
Van Wesep, R. A., Foundations of Mathematics, An Extended Guide and Introductory Text , Book draft, http://mathetal.net/data/book1.pdf, 20xx.Google Scholar