Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-11T08:46:45.466Z Has data issue: false hasContentIssue false

y = 2x VS. y = 3x

Published online by Cambridge University Press:  12 March 2014

Alexei Stolboushkin
Affiliation:
Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA, E-mail: aps@math.ucla.edu
Damian Niwiński
Affiliation:
Institute of Informatics, University of Warsaw, 02 097 Warsaw, Poland, E-mail: niwinski@mimuw.edu.pl

Abstract

We show that no formula of first order logic using linear ordering and the logical relation y = 2x can define the property that the size of a finite model is divisible by 3. This answers a long-standing question which may be of relevance to certain open problems in circuit complexity.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ajtai, M., formulae on finite structure, Annals of Pure and Applied Logic, vol. 24 (1983), pp. 148.CrossRefGoogle Scholar
[2]Barrington, D. A., Bounded-width polynomial-size branching programs recognize exactly those languages in NC1, Journal of Computer and Systems Sciences, vol. 38 (1989), no. 1, pp. 150164.CrossRefGoogle Scholar
[3]Barrington, D. A., Immerman, N., and Straubing, H., On uniformity within NC1, Structure in complexity theory: Third annual conference (Washington), IEEE Computer Society Press, 1988, pp. 4759, the Journal version in: Journal of Computer and Systems Sciences, vol. 41 (1990), pp. 274–306.Google Scholar
[4]Barrington, D. A. M., Compton, K. J., Thérien, D., and Straubing, H., Regular languages in NC1, Journal of Computer and Systems Sciences, vol. 44 (1989), pp. 478499.CrossRefGoogle Scholar
[5]Büchi, J., Weak second-order arithmetic and finite automata, Z. Math. Logik Grundlagen Math., vol. 6 (1960), pp. 6692.CrossRefGoogle Scholar
[6]Compton, K. and Straubing, H., Characterization of regular languages in low level complexity classes, Bulletin of the EATCS (1992), pp. 134142.Google Scholar
[7]Ehrenfeucht, A., An application of games to the completeness problem for formalized theories, Fundamenta Mathematicae, vol. 49 (1961), pp. 129141.CrossRefGoogle Scholar
[8]Fagin, R., Generalized first-order spectra and polynomial time recognizable sets, Complexity of computation (Karp, R. M., editor), SIAM-AMS Proceedings, vol. 7, 1974, pp. 4373.Google Scholar
[9]Fraïssé, R., Sur quelques classifications des systèmes de relations, Publ. Sci. Univ.Alger. Ser. A, vol. 1 (1954), pp. 35182.Google Scholar
[10]Furst, M., Saxe, J. B., and Sipser, M., Parity, circuits and the polynomial time hierarchy, Mathematical Systems Theory, vol. 17 (1984), pp. 1327.CrossRefGoogle Scholar
[11]Gurevich, Yu. and Lewis, H. R., A logic for constant-depth circuits, Information and Control, vol. 61 (1984), no. 1, pp. 6574.CrossRefGoogle Scholar
[12]Immerman, N., Languages which capture complexity classes, SIAM Journal on Computing, vol. 16 (1987), no. 4, pp. 760778.CrossRefGoogle Scholar
[13]Immerman, N., Descriptive and computational complexity, Computational complexity theory (Hartmanis, J., editor), Proceedings of Symposia in Applied Mathematics, vol. 38, American Mathematical Society, 1989, pp. 7591.CrossRefGoogle Scholar
[14]McNaughton, R. and Papert, S., Counter-free automata, MIT Press, Cambridge, 1971.Google Scholar
[15]Nurmonen, J., Counting modulo quantifiers on finite linearly ordered trees, Proceedings of the 11th LICS, 1996, to appear.Google Scholar
[16]Péladeau, P., Logically defined subsets of Nk, Proceedings of the MFCS, LNCS, vol. 379, 1989, pp. 397407.Google Scholar
[17]Straubing, H., Thérien, D., and Thomas, W., Regular languages defined with generalized quantifiers, Proceedings of the 15th ICALP, 1989, pp. 561575.Google Scholar
[18]Williams, J. W. J., Algorithm 232: Heapsort, Comm. ACM, vol. 7 (1964), no. 6, pp. 347348.Google Scholar