Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T06:19:10.491Z Has data issue: false hasContentIssue false

An algebraic approach to Wigner's unitary-antiunitary theorem

Published online by Cambridge University Press:  09 April 2009

Lajos Molnár
Affiliation:
Institute of Mathematics, Lajos Kossuth University, 4010 Debrecen, P.O.Box 12, Hungary e-mail: molnarl@math.klte.hu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an operator algebraic approach to Wigner's unitary-antiunitary theorem using some classical results from ring theory. To show how effective this approach is, we prove a generalization of this celebrated theorem for Hilbert modules over matrix algebras. We also present a Wigner-type result for maps on prime C*-algebras.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[Amb]Ambrose, W., ‘Structure theorems for a special class of Banach algebras’, Trans. Amer. Math. Soc. 57 (1945), 364386.CrossRefGoogle Scholar
[Bre]Brešar, M., ‘Jordan and Lie homomorphisms of associative rings’, preprint.Google Scholar
[Che]Chernoff, P. R., ‘Representations, automorphisms, and derivations of some operator algebras’. J. Funct. Anal. 12 1973), 275289.Google Scholar
[Cno]Cnops, J., Hurwitz Pairs and Applications of Möbius Transformations, (Thesis, University of Gent, 1994).Google Scholar
[Her1]Herstein, I. N., ‘Jordan homomorphisms’, Trans. Amer. Math. Soc. 81 1956), 331341.CrossRefGoogle Scholar
[Her2]Herstein, I. N., Rings with Involution (University of Chicago Press. Chicago. 1976).Google Scholar
[JaRi]Jacobson, N. and Rickart, C. E., ‘Homomorphisms of Jordan rings of self-adjoint elements’, Trans. Amer. Math. Soc. 72 (1952), 310322.CrossRefGoogle Scholar
[Kap]Kaplansky, I., ‘Modules over operator algebras’, Amer. J. Math. 75 (1953), 839853.Google Scholar
[LoMe]Lomont, J. S. and Mendelson, P., ‘The Wigner unitary-antiunitary theorem’, Ann. Math. 78 (1963), 548559.CrossRefGoogle Scholar
[Mar1]Martindale, W. S., ‘Jordan homomorphisms of the symmetric elements of a ring with involution’, J. Algebra 5 (1967), 232249.CrossRefGoogle Scholar
[Mar2]Martindale, W. S., ‘Prime rings satisfying a generalized polynomial identity’, J. Algebra 12 (1969), 576584.Google Scholar
[Mas]Masani, P., ‘Recent trends in multivariate prediction theory’, in: Multivariate Analysis (ed. Krishnaiah, P. R.) (Academic Press, New York, 1966).Google Scholar
[Mat]Mathieu, M., ‘Elementary operators on prime C*-algebras. I’, Math. Ann. 284 (1989), 223244.Google Scholar
[Moll]Molnár, L., ‘A note on the strong Schwarz inequality in Hilbert A-modules’, Publ. Math. (Debrecen) 40 (1992), 323325.Google Scholar
[Mo12]Molnár, L., ‘Modular bases in a Hilbert A-module’, Czech. Math. J. 42 (1992), 649656.CrossRefGoogle Scholar
[Mo13]Molnár, L., ‘Wigner's unitary-antiunitary theorem via Herstein' theorem on Jordan homomorphisms’, J. Nat. Geom. 10 (1996), 137148.Google Scholar
[Pal]Palmer, T. W., Banach Algebras and The General Theory of *-Algebras. Vol. I., Encyclopedia Math. Appl. 49 (Cambridge University Press, Cambridge, 1994).CrossRefGoogle Scholar
[Pas]Paschke, W. L., ‘Inner product modules over B*-algebras’, Trans. Amer. Math. Soc. 182 (1973), 443468.Google Scholar
[Rät]Rätz, J., ‘On Wigner's theorem: remarks, complements, comments, and corollaries’, Aequations Math. 52 (1996), 19.CrossRefGoogle Scholar
[Saw]Saworotnow, P. P., ‘A generalized Hilbert space’, Duke Math. J. 35 (1968), 191197.Google Scholar
[SaFr]Saworotnow, P. P. and Friedell, J. C., ‘Trace-class for an arbitrary H*-algebra’, Proc. Amer. Math. Soc. 26 (1970), 101104.Google Scholar
[ShAl]Sharma, C. S. and Almeida, D. F., ‘A direct proof of Wigner's theorem on maps which preserve transition probabilities between pure states of quantum systems’, Ann. Phys. 197 (1990), 300309.CrossRefGoogle Scholar
[Uhl]Uhlhorn, U., ‘Representation of symmetry transformations in quantum mechanics’, Ark. Fys. 23 (1963), 307340.Google Scholar
[WiMa]Wiener, N. and Masani, P., ‘The prediction theory of multivariate stochastic processes I’, Acta Math. 98 (1957), 111150.Google Scholar
[Wri]Wright, R., ‘The structure of projection-valued states: A generalization of Wigner's theorem’, Int. J. Theor. Phys. 16 (1977), 567573.Google Scholar