Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T16:57:49.852Z Has data issue: false hasContentIssue false

AN ALMOST EVERYWHERE VERSION OF SMÍTAL’S ORDER–CHAOS DICHOTOMY FOR INTERVAL MAPS

Published online by Cambridge University Press:  01 August 2008

ALEJO BARRIO BLAYA
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain (email: alejobar@um.es)
VÍCTOR JIMÉNEZ LÓPEZ*
Affiliation:
Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain (email: vjimenez@um.es)
*
For correspondence; e-mail: vjimenez@um.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that if f:I=[0,1]→I is a C3-map with negative Schwarzian derivative, nonflat critical points and without wild attractors, then exactly one of the following alternatives must occur: (i) R(f) has full Lebesgue measure λ; (ii) both S(f) and Scramb(f) have positive measure. Here R(f), S(f), and Scramb(f) respectively stand for the set of approximately periodic points of f, the set of sensitive points to the initial conditions of f, and the two-dimensional set of points (x,y) such that {x,y} is a scrambled set for f.Also, we show that if f is piecewise monotone and has no wandering intervals, then either λ(R(f))=1 or λ(S(f))>0, and provide examples of maps g,h of this type satisfying S(g)=S(h)=I such that, on the one hand, λ(R(g))=0and λ2 (Scramb (g))=0 , and, on the other hand, λ(R(h))=1 .

Type
Research Article
Copyright
Copyright © 2008 Australian Mathematical Society

Footnotes

This work has been partially supported by MEC (Ministerio de Educación y Ciencia, Spain) and FEDER (Fondo Europeo de Desarrollo Regional), grant MTM2005-03868, and Fundación Séneca (Comunidad Autónoma de la Región de Murcia, Spain), grant 00684/PI/04.

References

[1]Akin, E. and Kolyada, S., ‘Li–Yorke sensitivity’, Nonlinearity 16 (2003), 14211433.Google Scholar
[2]Barge, M. and Martin, J., ‘Dense orbits on the interval’, Michigan Math. J. 34 (1987), 311.Google Scholar
[3]Barrio Blaya, A. and Jiménez López, V., ‘Is trivial dynamics that trivial?Amer. Math. Monthly 113 (2006), 109133.Google Scholar
[4]Block, L. S. and Coppel, W. A., Dynamics in One Dimension, Lecture Notes in Mathematics, 1513 (Springer, Berlin, 1992).Google Scholar
[5]Block, L. S. and Keesling, J., ‘A characterization of adding machine maps’, Topology Appl. 140 (2004), 151161.Google Scholar
[6]Block, L. S., Keesling, J. and Misiurewicz, M., ‘Strange adding machines’, Ergod. Th. & Dynam. Sys. 26 (2006), 673682.Google Scholar
[7]Blokh, A. M., ‘The ‘spectral’ decomposition for one-dimensional maps’, Dynam. report. expositions dynam. systems (N.S.) 4 (1995), 159.Google Scholar
[8]Blokh, A. M. and Lyubich, M., ‘Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. II. The smooth case’, Ergod. Th. & Dynam. Sys. 9 (1989), 751758.Google Scholar
[9]Blokh, A. M. and Misiurewicz, M., ‘Wild attractors of polymodal negative Schwarzian maps’, Comm. Math. Phys. 199 (1998), 397416.Google Scholar
[10]Bruckner, A. M. and Hu, T., ‘On scrambled sets for chaotic functions’, Trans. Amer. Math. Soc. 301 (1987), 289297.Google Scholar
[11]Bruin, H., ‘Topological conditions for the existence of absorbing Cantor sets’, Trans. Amer. Math. Soc. 350 (1998), 22292263.Google Scholar
[12]Bruin, H., Keller, G., Nowicki, T. and van Strien, S., ‘Wild Cantor attractors exist’, Ann. of Math. (2) 143 (1996), 97130.CrossRefGoogle Scholar
[13]Bruin, H., Keller, G. and St. Pierre, M., ‘Adding machines and wild attractors’, Ergod. Th. & Dynam. Sys. 17 (1997), 12671287.Google Scholar
[14]Collet, P. and Eckmann, J.-P., Iterated Maps on the Interval as Dynamical Systems (Birkhäuser, Boston, MA, 1980).Google Scholar
[15]Fedorenko, V. V., Sharkovsky, A. N. and Smítal, J., ‘Characterizations of weakly chaotic maps of the interval’, Proc. Amer. Math. Soc. 110 (1990), 141148.CrossRefGoogle Scholar
[16]Fedorenko, V. V. and Smítal, J., ‘Maps of the interval Ljapunov stable on the set of nonwandering points’, Acta Math. Univ. Comenian. (N.S.) 60 (1991), 1114.Google Scholar
[17]Graczyk, J., Sands, D. and Świa̧tek, G., ‘Metric attractors for smooth unimodal maps’, Ann. of Math. (2) 159 (2004), 725740.CrossRefGoogle Scholar
[18]Guckenheimer, J., ‘Sensitive dependence to initial conditions for one-dimensional maps’, Comm. Math. Phys. 70 (1979), 133160.Google Scholar
[19]Janková, K. and Smítal, J., ‘A characterization of chaos’, Bull. Austral. Math. Soc. 34 (1986), 283292.Google Scholar
[20]Jiménez López, V., ‘Algunas cuestiones sobre la estructura del caos’, Master Thesis, Universidad de Murcia, 1989.Google Scholar
[21]Jiménez López, V., ‘Paradoxical functions on the interval’, Proc. Amer. Math. Soc. 120 (1994), 465473.Google Scholar
[22]Jiménez López, V., ‘An explicit description of all scrambled sets of weakly unimodal functions of type ’, Real Anal. Exchange 21 (1995–96), 664–688.Google Scholar
[23]Jiménez López, V. and Snoha, L′., ‘There are no piecewise linear maps of type ’, Trans. Amer. Math. Soc. 349 (1997), 13771387.CrossRefGoogle Scholar
[24]Kozlovski, O. S., ‘Getting rid of the negative Schwarzian derivative condition’, Ann. of Math. (2) 152 (2000), 743762.Google Scholar
[25]Kuchta, M. and Smítal, J., ‘Two-point scrambled set implies chaos’, in: Proc. European Conf. on Iteration Theory Caldes de Malavella, 1987 (World Scientific, Teaneck, N.J., 1989), pp. 427430.Google Scholar
[26]Li, T.-Y. and Yorke, J. A., ‘Period three implies chaos’, Amer. Math. Monthly 82 (1975), 985992.Google Scholar
[27]Lyubich, M., ‘Nonexistence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. I. The case of negative Schwarzian derivative’, Ergod. Th. & Dynam. Sys. 9 (1989), 737749.Google Scholar
[28]Lyubich, M., ‘Ergodic theory for smooth one-dimensional dynamical systems’, Stony Brook preprint, 1991/11. http://www.math.sunysb.edu/cgi-bin/preprint.pl?ims91-11.Google Scholar
[29]Lyubich, M., ‘Combinatorics, geometry and attractors of quasi-quadratic maps’, Ann. of Math. (2) 140 (1994), 347404 (Erratum available at http://www.arXiv.org (math.DS/0212382)).Google Scholar
[30]Mañé, R., ‘Hyperbolicity, sinks and measure in one-dimensional dynamics’, Comm. Math. Phys. 100 (1985), 495524 (Erratum Comm. Math. Phys. 112 (1987), 721–724).CrossRefGoogle Scholar
[31]Martens, M., de Melo, W. and van Strien, S., ‘Julia–Fatou–Sullivan theory for real one-dimensional dynamics’, Acta Math. 168 (1992), 273318.Google Scholar
[32]de Melo, W. and van Strien, S., ‘A structure theorem in one-dimensional dynamics’, Ann. of Math. (2) 129 (1989), 519546.CrossRefGoogle Scholar
[33]Misiurewicz, M. and Smítal, J., ‘Smooth chaotic maps with zero topological entropy’, Ergod. Th. & Dynam. Sys. 8 (1988), 421424.CrossRefGoogle Scholar
[34]Preston, C., Iterates of Piecewise Monotone Mappings on an Interval, Lecture Notes in Mathematics, 1347 (Springer, Berlin, 1988).Google Scholar
[35]Sharkovsky, A. N., ‘Co-existence of cycles of a continuous mapping of the line into itself’, Ukrain. Mat. Z˘. 16 (1964), 6171 (in Russian).Google Scholar
[36]Shen, W., ‘Decay of geometry for unimodal maps: an elementary proof’, Ann. of Math. (2) 163 (2006), 383404.Google Scholar
[37]Smítal, J., ‘A chaotic function with some extremal properties’, Proc. Amer. Math. Soc. 87 (1983), 5456.Google Scholar
[38]Smítal, J., ‘Chaotic functions with zero topological entropy’, Trans. Amer. Math. Soc. 297 (1986), 269282.Google Scholar
[39]van Strien, S. and Vargas, E., ‘Real bounds, ergodicity and negative Schwarzian for multimodal maps’, J. Amer. Math. Soc. 17 (2004), 749782.Google Scholar