Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T07:18:53.888Z Has data issue: false hasContentIssue false

An LP version of Hardy's theorem for the Dunkl transform

Published online by Cambridge University Press:  09 April 2009

Léonard Gallardo
Affiliation:
Faculté des Sciences, Département de Mathématiques, Parc de Grandmont, 37200 Tours, France e-mail: gallardo@univ-tours.fr
Khalifa Trimèche
Affiliation:
Faculté des Sciences de Tunis, Départment de Mathématiques, Campus Universitaire, 1060 Tunis, Tunisie e-mail: khlifa.trimeche@fst.rnu.tn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we give a generalization of Hardy's theorems for the Dunkl transform ℱD on ℝd. More precisely for all a > 0, b > 0 and p, q ∈ [1, + ∞], we determine the measurable functions f on ℝd such that where are the Lebesgue spaces associated with the Dunkl transform.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Bourbaki, N., Éléments de Mathématiques. Fascicule XXI. Intégration des mesures. Chapitre 5 (Hermann, Paris, 1967).Google Scholar
[2]Cowling, M. G. and Price, J. F., Generalizations of Heisenberg inequality, Lecture Notes in Math. 992 (Springer, Berlin, 1983) pp. 443449.Google Scholar
[3]de Jeu, M. F. E., ‘The Dunkl transform’, Invent. Math. 113 (1993), 147162.CrossRefGoogle Scholar
[4]Dunkl, C. F., ‘Integral kernels with reflection group invariance’, Canad. J. Math. 43 (1991), 12131227.CrossRefGoogle Scholar
[5]Dunkl, C. F., ‘Hankel transforms associated to finite reflection groups’, Contemp. Math. 138 (1992), 123138.CrossRefGoogle Scholar
[6]Eguchi, M., Koizumi, S. and Kumahara, K., ‘An Lp version of the Hardy theorem for the motion group’, J. Austral. Math. Soc. (Series A) 68 (2000), 5567.CrossRefGoogle Scholar
[7]Gallardo, L. and Trimèche, K., ‘Un analogue d'un théorème de Hardy pour la transformation de Dunkl’, C. R. Acad. Sci. Paris, Ser. I 334 (2002), 849854.CrossRefGoogle Scholar
[8]Hardy, G. H., ‘A theorem concerning Fourier transform’, J. London Math. Soc. 8 (1933), 227231.CrossRefGoogle Scholar
[9]Heckman, G. J., ‘An elementary approach to the hypergeometric shift operators of Opdam’, Invent. Math. 103 (1991), 341350.CrossRefGoogle Scholar
[10]Hikami, K., ‘Dunkl operators formalism for quantum many-body problems associated with classical root systems’, J. Phys. Soc. Japan 65 (1996), 394401.CrossRefGoogle Scholar
[11]Lapointe, L. and Vinet, L., ‘Exact operator solution of the Calogero-Sutherland model’, Comm. Math. Phys. 178 (1996), 425452.CrossRefGoogle Scholar
[12]Rösler, M., ‘Generalized Hermite polynomials and the heat equation for Dunkl operators’, Comm. Math. Phys. 192 (1998), 519542.Google Scholar
[13]Rösler, M., ‘Positivity of Dunkl's intertwining operator’, Duke Math. J. 98 (1999), 445463.CrossRefGoogle Scholar
[14]Rösler, M., ‘An uncertainty principle for the Dunkl transform’, Bull. Austral. Math. Soc. 59 (1999), 353360.CrossRefGoogle Scholar
[15]Sitaram, A., Sundari, M. and Thangavalu, S., ‘Uncertainty principles on certain Lie groups’, Proc. Indian Acad. Sci. (Math. Sci.) 105 (1995), 135151.CrossRefGoogle Scholar
[16]Trimèche, K., ‘The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual’, Integral Transform. Spec. Funct. 12 (2001), 349374.CrossRefGoogle Scholar