Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T05:42:25.183Z Has data issue: false hasContentIssue false

The Burkill approximately continuous integral

Published online by Cambridge University Press:  09 April 2009

P. S. Bullen
Affiliation:
Mathematics DepartmentThe University of British ColumbiaVancouver, British Columbia, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper defines descriptive, Riemann, and constructive integrals equivalent to the approximately continuous integral of Burkill.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

[1]Aleksandrov, A., ‘Über die Äquivalenz des Perronschen und des Denjoyschen Integralbegriffes’, Math. Z. 20 (1924), 213222.Google Scholar
[2]Bosanquet, L. S., ‘A property of Cesáro-Perron integrals’, Proc. Edinburgh Math. Soc. (2) 6 (1940), 160165.CrossRefGoogle Scholar
[3]Bullen, P. S., ‘Non-absolute integrals; a survey’, Real Anal. Exchange 5 (1980), 195259.CrossRefGoogle Scholar
[4]Burkill, J. C., ‘The approximately continuous Perron integral’, Math. Z. 34 (1931), 270278.CrossRefGoogle Scholar
[5]Grimshaw, M. E., ‘The Cauchy property of the generalised Perron integrals’, Proc. Cambridge Philos. Soc. 30 (1934), 1518.CrossRefGoogle Scholar
[6]Henstock, R., Theory of integration (London, 1963).Google Scholar
[7]Henstock, R., Linear analysis (London, 1967).Google Scholar
[8]Henstock, R., ‘The variation on the real line’, Proc. Roy. Irish Acad. Sect. A 79 (1979), 110.Google Scholar
[9]Kubota, Y., ‘An integral of Denjoy’, I. Proc. Japan. Acad. 40 (1964), 713717.Google Scholar
[10]Kubota, Y., ‘On the compatibility of the AP-and the D-integrals’, Proc. Japan Acad. 44 (1968), 330333.Google Scholar
[11]Kubota, Y., ‘A characterization of the approximately continuous Denjoy integral’, Canad. J. Math. 22 (1970), 219226.CrossRefGoogle Scholar
[12]Kubota, Y., ‘A constructive definition of the approximately continuous Denjoy integral’, Canad. Math. Bull. 15 (1972), 103108.CrossRefGoogle Scholar
[13]Kubota, Y., ‘A direct proof that the RC-integral is equivalent to the D*-integral’, Proc. Amer. Math. Soc. 80 (1980), 293296.Google Scholar
[14]Kubota, Y., ‘An elementary theory of the special Denjoy integral’, Math. Japon. 24 (1980), 507520.Google Scholar
[15]O'Malley, R., ‘Selective derivatives’, Acta Math.Acad. Sci. Hungar. 29 (1977), 7779.CrossRefGoogle Scholar
[16]Pfeffer, W. F., The Riemann-Stieltjes approach to approach to integration (Technical Report, TWISK 187, National Research Inst. for Math. Sci., Pretoria, 1980).Google Scholar
[17]Ridder, J., ‘Über den Perronschen Integralbegriff und seine Beziehung zu den R-, L- und D-Integralen’, Math. Z. 34 (1932), 234269.CrossRefGoogle Scholar
[18]Ridder, J., ‘Über approximativ stetige Denjoy-Integrale’, Fund. Math. 21 (1933), 110.CrossRefGoogle Scholar
[19]Ridder, J., ‘Über die Gegenseitigen Beziehungen verschiedener approximativ stetiger Denjoy-Perron Integrale’, Fund. Math. 22 (1934), 136162.CrossRefGoogle Scholar
[20]Saks, S., Theory of the integral, 2nd ed., revised (New York, 1937).Google Scholar
[21]Solomon, D. W., Denjoy integration in abstract spaces (Mem. Amer. Math. Soc. 85, 1969).Google Scholar
[22]Sunouchi, G. and Utagawa, M., ‘The generalized Perron integrals’, Tôhoku Math. J. 1 (1949), 9599.CrossRefGoogle Scholar
[23]Thomson, B. S., ‘On full coverings’, Real Anal. Exchange 6 (19801981), 7793.CrossRefGoogle Scholar
[24]Tolstov, G. P., ‘Sur quelques propriétés des fonctions approximativement continues’, Mat. Sb. 5 (1939), 637645.Google Scholar
[25]Tolstov, G. P., ‘Sur l'intégrale de Perron’, Mat. Sb. 5 (1939), 647659.Google Scholar
[26]Tolsov, G. P., ‘La méthode de Perron pour l'intégrale de Denjoy’, Mat. Sb. 8 (1940), 149167.Google Scholar
[27]Zahorski, Z., ‘Ueber die Menge der Punkte in welchen die Ableitung unendlich ist’, Tôhoku Math. J. 48 (1941), 321332.Google Scholar