Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T22:56:30.907Z Has data issue: false hasContentIssue false

C*-actions of r-discrete groupoids and inverse semigroups

Published online by Cambridge University Press:  09 April 2009

John Quigg
Affiliation:
Department of Mathematics, Arizona State University, Tempe, Arizona 85287 e-mail: quigg@math.la.asu.edu, nandor.sieben@:1:28 asu.edu
Nándor Sieben
Affiliation:
Department of Mathematics, Arizona State University, Tempe, Arizona 85287 e-mail: quigg@math.la.asu.edu, nandor.sieben@:1:28 asu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Groupoid actions on C*-bundles and inverse semigroup actions on C*-algebras are closely related when the groupoid is r-discrete.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[Bla]Blanchard, E., ‘Déformation de C*-algèbres de Hopf’, Bull. Soc. Math. France 124 (1996), 141215.Google Scholar
[Dix]Dixmier, J., C*-algebras (North-Holland, Amsterdam, 1977).Google Scholar
[DG]Dupré, M. J. and Gillette, R. M., Banach bundles, Banach modules and automorphisms of C*-algebras, Res. Notes Math. Ser. 92 (Pitman, 1983).Google Scholar
[Exe]Exel, R., ‘Circle actions on C*-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence’, J. Funct. Anal. 122 (1994), 361401.CrossRefGoogle Scholar
[Exe]Exel, R., ‘Partial actions of groups and actions of inverse semigroups’, Proc. Amer. Math. Soc., to appear.Google Scholar
[Hae]Haefliger, A., ‘Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes’, Comment. Math. Helv. 32 (1958), 248329.CrossRefGoogle Scholar
[HR]Hancock, R. and Raeburn, I., ‘The C*-algebras of some inverse semigroups’, Bull. Austral. Math. Soc. 42 (1990), 335348.CrossRefGoogle Scholar
[Kum1]Kumjian, A., ‘On localizations and simple C*-algebras’, Pacific J. Math. 112 (1984), 141192.CrossRefGoogle Scholar
[Kum2]Kumjian, A., ‘Fell bundles over groupoids’, Proc. Amer. Math. Soc. 126 (1998), 11151125.CrossRefGoogle Scholar
[McC]McClanahan, K., ‘K-theory for partial crossed products by discrete groups’, J. Funct. Anal. 130 (1995), 77117.CrossRefGoogle Scholar
[Nic]Nica, A., ‘On a groupoid construction for actions of certain inverse semigroups’, Internat. J. Math. 5 (1994), 349372.CrossRefGoogle Scholar
[Nil]Nilsen, M., ‘C*-bundles and C0(X)-algebras’, Indiana Univ. Math. J. 45 (1996), 463478.CrossRefGoogle Scholar
[Pat]Paterson, A. L. T., Groupoids, inverse semigroups, and their operator algebras (Birkhäuser, to appear).CrossRefGoogle Scholar
[Rae]Raeburn, I., ‘Induced C*-algebras and a symmetric imprimitivity theorem’, Math. Ann. 280 (1988), 369387.CrossRefGoogle Scholar
[Rei]Reinhart, B. L., Geometry of foliations, Ergebnisse der Mathematik und ihrer Grenzgebiete, 99 (Springer, Berlin, 1983).CrossRefGoogle Scholar
[Ren1]Renault, J. N., A groupoid approach to C*-algebras, Lecture Notes in Math., 793 (Springer, Berlin, 1980).CrossRefGoogle Scholar
[Ren2]Renault, J. N., ‘Représentation des produits croisés d'algèbres de groupoides’, J. Operator Theory 18 (1987), 6797.Google Scholar
[Rie]Rieffel, M. A., ‘Continuous fields of C*-algebras coming from group cocycles and actions’, Math. Ann. 283 (1989), 531562.CrossRefGoogle Scholar
[Sie1]Sieben, N., Actions of inverse semigroups on C*-algebras (Ph.D. Thesis, Arizona State University, 1997).Google Scholar
[Sie2]Sieben, N., ‘C*-crossed products by partial actions and actions of inverse semigroups’, J. Austral. Math. Soc. Ser. A 63 (1997), 3246.CrossRefGoogle Scholar