Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T07:37:22.806Z Has data issue: false hasContentIssue false

Carl Felix Moppert, 1920–1984

Published online by Cambridge University Press:  09 April 2009

J. N. Crossley
Affiliation:
Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia
J. B. Miller
Affiliation:
Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Obituary
Copyright
Copyright © Australian Mathematical Society 1987

References

Publications of C. F. Moppert

1.Über Relationen zwischen m– und p–Funktionen’, Verh. Naturforsch. Ges. Basel 60 (1949), 6176.Google Scholar
2.Über eine gewisse Klasse von elliptischen Riemann'schen Flächen’, Comment. Math. Helv. 23, 2 (1949), 174176.CrossRefGoogle Scholar
3.Über eine diophantische Identität’, Comment. Math. Helv. 25, 1 (1951), 7174.CrossRefGoogle Scholar
4.Deduction of Cardano's formula by conformal mapping’, Amer. Math. Monthly 59, 9 (1952), 310314.CrossRefGoogle Scholar
5.Über einen verallgemeinerten Ableitungsoperator’, Comment. Math. Helv. 27, 2 (1953), 140150.CrossRefGoogle Scholar
6.(with Grün, F.) ‘Zur Behandlung der Brown'schen Bewegung mit Hilfe der Langevin Gleichung’, Helv. Phys. Acta 27, 5 (1954), 417426.Google Scholar
7.Über das Rechnen mit Operatoren’, Elem. Math. 9, 4 (1954), 7376.Google Scholar
8.(with Grün, F.) ‘Eine Bemerkung zur Langevin-Gleichung’, Experimenta 10 (1954), 481.Google Scholar
9.Funktionenscharen im L 2’, Math. Z. 67 (1957), 474478.CrossRefGoogle Scholar
10.On a property of complex power series’, Amer. Math. Monthly 64, 2 (1957), 8889.Google Scholar
11.On the Gram determinant’, Quart. J. Math. Oxford Ser. (2) 10 (1959), 161164.CrossRefGoogle Scholar
12.On the notion of analyticity’, Proc. Amer. Math. Soc. 10, 4 (1959), 574576.CrossRefGoogle Scholar
13.The triangular inequality in the projective model of a hyperbolic geometry’, Amer. Math. Monthly 67, 8 (1960), 782784.CrossRefGoogle Scholar
14.Construction of a characteristic basis for a matrix’, Amer. Math. Monthly 73, 10 (1966), 10621069.Google Scholar
15.Remarks on linear differential equations’, The Mathematics Student 35, 1–4 (1967), 4346.Google Scholar
16.A Self-Balancing Crane’, Mechanics and Machine Theory 9 (1974), 359366.CrossRefGoogle Scholar
17.Galois theory in some function fields’ (Analysis Paper 17, Monash University, 10 pp, 10 1976).Google Scholar
18.Spherical pendulum and Foucault effect’ (Analysis Paper 23, Monash University, 20 pp, 11 1977).Google Scholar
19.(with Bonwick, W.) ‘The new Foucault pendulum at Monash University’, Q.H.R. Astr. Soc. 21 (1980), 108118.Google Scholar
20.Geometry of continuous motions’ (Analysis Paper 29 = Geometry Paper 0, Monash University, 26 pp, 01 1981).Google Scholar
21.Two problems in ‘Open questions in mathematics—a collection of unsolved problems’ (ed. Henney, D. R., George Washington University, 1981).Google Scholar
22.The Monash sundial’, Function 5, 5 (1981), 29.Google Scholar
23.Isotropic coordinates and isogonal mapping’ (Geometry Paper 1, Monash University, 16 pp, 09 1981).Google Scholar
24.(with Hunt, K. H.) ‘On the guidance of a lamina by algebraic directrices Part 1: Order and circularity of point paths’ (Proc. Sixth World Congress on Theory of Machines and Mechanisms, New Delhi, 12 1983, 5760).Google Scholar
25.(with Hunt, K. H.) ‘On the guidance of a lamina by algebraic directrices Part 2: Tangents, asymptotes, applications’ (Proc. Sixth World Congress on Theory of Machines and Mechanisms 6164).Google Scholar
26.Generating the group of hyperbolic motions by powers of two parallel displacements’, Geom. Dedicata 14 (1983), 141144.Google Scholar
27.The group of rotations of the sphere’ (Geometry Paper 8, Monash University, 8 pp, 01 1983).Google Scholar
28.The group of rotations of the sphere: generators and relations’, Geom. Dedicata 18 (1985), 5965.Google Scholar
29.Two rotations generate all Euclidean motions and all elliptic motions, Geom. Dedicata 18 (1985), 275280.Google Scholar
30.The M-pump’, Function 8, 4 (1984), 27.Google Scholar