Published online by Cambridge University Press: 23 December 2016
In this article, we extend the notion of FP-injective modules to that of Cartan–Eilenberg complexes. We show that a complex $C$ is Cartan–Eilenberg FP-injective if and only if $C$ and $\text{Z}(C)$ are complexes consisting of FP-injective modules over right coherent rings. As an application, coherent rings are characterized in various ways, using Cartan–Eilenberg FP-injective and Cartan–Eilenberg flat complexes.
This research was supported by the National Natural Science Foundation of China (No. 11501451), the Fundamental Research Funds for the Central Universities (No. 31920150038) and XBMUYJRC (No. 201406).