Article contents
Certain extensions and factorizations of α-complete homomorphisms in archimedean lattice-ordered groups
Published online by Cambridge University Press: 09 April 2009
Abstract
As a consequence of general principles, we add to the array of ‘hulls’ in the category Arch (of archimedean ℓ-groups with ℓ-homomorphisms) and in its non-full subcategory W (whose objects have distinguished weak order unit, whose morphisms preserve the unit). The following discussion refers to either Arch or W. Let α be an infinite cardinal number or ∞, let Homα; denote the class of α-complete homomorphisms, and let R be a full epireflective subcategory with reflections denoted rG: G → rG. Then for each G, there is rαG ∈ Homα (G, R) such that for each ϕ ∈ Homα (G, R), there is unique with . Moreover if every rG is an essential embedding, then, for every α and every G, rαG = rG, and every Homα. If and R consists of all epicomplete objects, then every Homw1. For α = ∞, and for any R, every Hom∞.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1997
References
- 2
- Cited by