No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
Various generalizations of the Maxwell characterization of the multivariate standard normal distribution are derived. For example the following is proved: If for a k-dimensional random vector X there exists an n ∈ {l, …, k − l} such that for each n-dimensional linear subspace H Rk the projections of X on H and H⊥ are independent, X is normal. If X has a rotationally symmetric density and its projection on some H has a density of the same functional form, X is normal. Finally we give a variational inequality for the multivariate normal distribution which resembles the isoperimetric inequality for the surface measure on the sphere.