No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
Let G be a finite and u(G) the group of all invertible transformations (polynomial permutations) of the form x→a1 x1→ xk a2⃛ar xkr ar+1 (aiε G, x runs through G). Continuing investigations of H. Lausch of groups satisfying u(G) = {X→axk b} we show here that this condition implies that G is the direct product of its {2, 3}-Hall subgroup and its {2, 3}′-Hall subgroup H where H is nilpoint of class ≤2. Essentially all non-nilpoint groups G of order 2m 3n are described having the property u(G)= {x→axk b}