Published online by Cambridge University Press: 29 September 2015
For any real number ${\it\beta}$ with ${\it\beta}>1$, let ${\mathcal{M}}(\,{\it\beta})$ (${\mathcal{N}}(\,{\it\beta})$ respectively) denote the class of analytic functions $f$ in the unit disk $\mathbb{D}:=\{z\in \mathbb{C}:|z|<1\}$ of the form $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ and satisfying $\text{Re}\,P_{f}<{\it\beta}$ ($\text{Re}\,Q_{f}<{\it\beta}$ respectively) in $\mathbb{D}$, where $P_{f}=zf^{\prime }(z)/f(z)$ and $Q_{f}=1+zf^{\prime \prime }(z)/f^{\prime }(z)$. Also, for ${\it\beta}>1$, let ${\mathcal{M}}{\rm\Sigma}(\,{\it\beta})$ (${\mathcal{N}}{\rm\Sigma}(\,{\it\beta})$ respectively) denote the class of analytic functions $g$ of the form $g(z)=z(1+\sum _{n=1}^{\infty }b_{n}z^{-n})$ and satisfying $\text{Re}\,P_{g}<{\it\beta}$ ($\text{Re}\,Q_{g}<{\it\beta}$ respectively) for $z\in {\rm\Delta}=\{z\in \mathbb{C}:1<|z|<\infty \}$. In this paper, we shall determine the coefficient bounds, inverse coefficient bounds, the growth and distortion theorem and the upper bounds for the Fekete–Szegő functional ${\rm\Lambda}_{{\it\lambda}}(f)=a_{3}-{\it\lambda}a_{2}^{2}$ for functions $f$ in the classes ${\mathcal{M}}(\,{\it\beta})$ and ${\mathcal{N}}(\,{\it\beta})$. Further, we shall solve the maximal area problem for functions of the type $z/f(z)$ when $f\in {\mathcal{M}}(\,{\it\beta})$, which is Yamashita’s conjecture for the class ${\mathcal{M}}(\,{\it\beta})$. We shall obtain the radius of convexity for the class ${\mathcal{N}}(\,{\it\beta})$. We shall also determine the coefficient bounds for functions $g$ in the classes ${\mathcal{M}}{\rm\Sigma}(\,{\it\beta})$ and ${\mathcal{N}}{\rm\Sigma}(\,{\it\beta})$ and the inverse coefficient bounds for functions $g$ in the class ${\mathcal{M}}{\rm\Sigma}(\,{\it\beta})$. All the results are sharp.