Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:14:18.202Z Has data issue: false hasContentIssue false

Compactifications of semitopological semigroups

Published online by Cambridge University Press:  09 April 2009

Paul Milnes
Affiliation:
University of Western OntarioLondon 72, Canada.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose S is a semitopological semigroup. We consider various subspaces of C(S) and determine what topological algebraic structure can be introduced into the spaces of means on the subspaces and into the spectra of the C*-sub-algebras of C(S) they generate.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1973

References

[1]Berglund, J. F. and Hofmann, K., Compact Semitopological Semigroups and Weakly Almost Periodic Functions (Lecture Notes in Mathematics, 42, Springer-Verlag, Berlin, 1967).CrossRefGoogle Scholar
[2]Deleeuw, K. and Glicksberg, I., ‘Applications of almost periodic compactifications’, Acta Math. 105 (1961), 6397.CrossRefGoogle Scholar
[3]Dunford, N. and Schwartz, J. T., Linear Operators I (Interscience, second printing, New York 1964).Google Scholar
[4]Ellis, R., ‘Locally compact transformation groups’, Duke Math. J. 24 (1957), 195202.Google Scholar
[5]Glicksberg, I., ‘Weak compactness and separate continuity’, Pacific J. Math. 11 (1961), 205214.Google Scholar
[6]Granirer, E., ‘On Baire measures on D-topological spacesFund. Math. 60 (1967), 122.CrossRefGoogle Scholar
[7]Granirer, E. and Lau, A. T., ‘Invariant means on locally compact groups’ Illinois J. Math. (to appear).Google Scholar
[8]Greenleaf, F. P., Invariant Means on Topological Groups and Their Applications (Van Nostrand Mathematical Studies # 16, D. Van Nostrand, Princeton, 1969).Google Scholar
[9]Grothendieck, A., ‘Critères de compacité dans les espaces fonctionnels généraux’, Amer. J. Math. 74 (1952), 168186.CrossRefGoogle Scholar
[10]Kelley, J. L., General Topology (D. Van Nostrand, Princeton, 1955).Google Scholar
[11]Mitchell, T., ‘Function algebras, means, and fixed points’, Trans. Amer. Math. Soc. 130 (1968) 117126.CrossRefGoogle Scholar
[12]Mitchell, T., ‘Topological semigroups and fixed points’, Illinois J. Math. (to appear).Google Scholar
[13]Montgomery, D. and Zippin, L., Topological Transformation Groups (Interscience, fourth printing, New York, 1966).Google Scholar
[14]Namioka, I., ‘On certain actions of semigroups on L-spaces’, Studia Math. 29 (1967), 6377.CrossRefGoogle Scholar
[15]Phelps, R. R., Lecturers on Choquet's Theorem (Van Nostrand Mathematical Studies # 7, D. Van Nostrand, Princeton, 1966).Google Scholar
[16]Pym, J. S., ‘The convolution of functionals on spaces of bounded functions’, Proc. London Math. Soc. 15 (1964), 84104.Google Scholar
[17]Rainwater, J., ‘Weak convergence of bounded sequences’, Proc. Amer. Math. Soc. 14 (1963), 999.Google Scholar
[18]Rao, C. R., ‘Invariant means on spaces of continuous or measurable functionsTrans. Amer. Math. Soc. 114 (1965), 187196.Google Scholar
[19]Weil, A., L'intégration dans les groups topologiques et ses applications, second edition (Hermann, Paris, 1965).Google Scholar
[20]Witz, K., ‘Applications of a compactification for bounded operator semigroups’, Illinois J. Math. 8 (1964), 685696.CrossRefGoogle Scholar
[21]Berglund, J. F., ‘On extending almost periodic functions’, Pacific J. Math. 33 (1970) 281298.Google Scholar
[22]Burckel, R. B., Weakly Almost Periodic Functions on Semigroups (Gordon and Breach, New York, 1970).Google Scholar
[23]Dixmier, J., Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1964).Google Scholar
[24]Eymard, P., ‘L'algèbre de Fourier d'un groupe localement compact’, Bull. Soc. math. France 92 (1964), 181236.Google Scholar
[25]McMullen, J. R., Extensions of positive definite functions (Amer. Math. Soc. Memoir # 117, Providence, 1972).Google Scholar
[26]Renaud, P. E., ‘Equivalent types of invariant means on locally compact groups’, Proc. Amer. Math. Soc. 31 (1972), 495498.Google Scholar
[27]Weil, A., Sur les espaces à structure uniforme et sur la topologie générale (Hermann, Paris, 1937).Google Scholar