Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T02:04:39.313Z Has data issue: false hasContentIssue false

Concise survey of mathematical logic

Published online by Cambridge University Press:  09 April 2009

John Stillwell
Affiliation:
Monash University Clayton 3168 Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper contains proofs of the compactness, completeness and Löwenheim-Skolem theorems for predicate logic, together with their application to nonstandard numbers; proofs of undecidability in predicate logic and number theory, and the Gödel incompleteness theorem.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1977

References

Borel, E. (1952), Les Nombres Inaccessibles (Gauthier-Villars).Google Scholar
Church, A. (1936), “A note on the Entscheidungsproblem”, J. Symbolic Logic 1, 4041.CrossRefGoogle Scholar
Crossley, J. and others (1952), What is Mathematical Logic? (Oxford University Press).Google Scholar
Davis, M. (1965), The Undecidable (Raven Press).Google Scholar
Gödel, K. (1930), “Die Vollständigkeit der Axiom des logischen Funktionenkalküls”, Monatsch. Math. Phys. 37, 349360.CrossRefGoogle Scholar
Gödel, K. (1931), “Über formal unentscheidbare Sätze der Principia Mathematica und verwandte Systeme I”, Monatsh. Math. Phys. 38, 173198.CrossRefGoogle Scholar
Herbrand, J. (1930), “Recherches sur la théorie de la demonstration”, Travaux de la Société des Lettres de Varsovie, Classe III, sciences math, et phys., 33.Google Scholar
Kleene, S. C. (1958), “Mathematical logic”, Proc. Int. Cong. Math. 1958, 137153.Google Scholar
Löwenheim, L. (1915), “Über Möglichkeiten im Relativkalkül”, Math. Ann. 76, 447470.CrossRefGoogle Scholar
Post, E. (1921), “Introduction to a general theory of elementary propositions”, Amer. J. Math. 43, 163185.CrossRefGoogle Scholar
Post, E. (1944), “Recursively enumerable sets of positive integers and their decision problems”, Bull. Amer. Math. Soc. 50, 284316.CrossRefGoogle Scholar
Post, E. (1947), “Recursive unsolvability of a problem of Thue”, J. Symb. Logic 12, 111.CrossRefGoogle Scholar
Skolem, T. (1955), Mathematical Interpretation of Formal Systems (North Holland).Google Scholar
Smullyan, R. (1961), Theory of Formal Systems (Princeton University Press).CrossRefGoogle Scholar
Turing, A. (1936), “On computable numbers with an application to the Entscheidungs-problem”, Proc. Lond. Math. Soc. (2), 42, 230265.Google Scholar