Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T04:59:13.488Z Has data issue: false hasContentIssue false

Convexity of generalized numerical range associated with a compact Lie group

Published online by Cambridge University Press:  09 April 2009

Tin-Yau Tam
Affiliation:
Department of Mathematics, 218 Parker Hall, Auburn University, AL 36849-5310, USA e-mail: tamtiny@auburn.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Westwick's convexity theorem on the numerical range is generalized in the context of compact connected Lie groups.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Atiyah, M. F., ‘Convexity and commuting Hamiltonians’, Bull. London Math. Soc. 308 (1982), 115.CrossRefGoogle Scholar
[2]Atiyah, M. F. and Bott, R., ‘The Yang-Mills equations over Riemann surfaces’, Philos. Trans. Roy. Soc. London Ser. A 14 (1982), 523615.Google Scholar
[3]Au-Yeung, Y. H. and Poon, Y. T., ‘A remark on the convexity and positive definiteness concerning Hermitian matrices’, Southeast Asian Bull. Math. 3 (1979), 8592.Google Scholar
[4]Au-Yeung, Y. H. and Tsing, N. K., ‘An extension of the Hausdorff-Toeplitz theorem on the numerical range’, Proc. Amer. Math. Soc. 89 (1983), 215218.CrossRefGoogle Scholar
[5]Au-Yeung, Y. H., ‘Some theorems on the numerical range’, Linear and Multilinear Algebra 15 (1984), 311.CrossRefGoogle Scholar
[6]Audin, M., The topology of torus actions on symplectic manifolds, Progress in Mathematics 93 (Birkäuser, Boston, 1991).CrossRefGoogle Scholar
[7]Berger, C. A., Normal dilations (Ph.D. Thesis, Cornell University, 1963).Google Scholar
[8]Bonsall, F. F. and Duncan, J., Numerical ranges of operators on normed spaces and elements of normed algebras, London Math. Soc. Lecture Notes 2 (Cambridge University Press, 1971).Google Scholar
[9]Bott, R. and Samelson, H., ‘Applications of the theory of Morse to symmetric spaces’, Amer. J. Math. 80 (1958), 9641029.Google Scholar
[10]Guillemain, V. and Sternberg, S., ‘Convexity properties of the moment mapping’, Invent. Math. 67 (1982), 491513.Google Scholar
[11]Guillemain, V., ‘Convexity properties of the moment mapping II’, Invent. Math. 77 (1984), 533546.Google Scholar
[12]Gustafson, K. E. and Rao, D. K. M., Numerical range: the field of values of linear operators and matrices (Springer, New York, 1997).Google Scholar
[13]Hausdorff, F., ‘Der Wertvorrat einer Bilinearform’, Math Z. 3 (1919), 314316.Google Scholar
[14]Kirillov, A. A., Elements of the theory of representations (Springer, Berlin, 1976).CrossRefGoogle Scholar
[15]Kirwan, F., ‘Convexity properties of the moment mapping III’, Invent. Math. 77 (1984), 547552.CrossRefGoogle Scholar
[16]Knapp, A., Lie groups beyond an introduction, Progress in Mathematics 140 (Birkhäuser, Boston, 1996).Google Scholar
[17]Li, C. K., ‘C-numerical ranges and c-numerical radii’, Linear and Multilinear Algebra 37 (1994), 5182.Google Scholar
[18]Poon, Y. T., ‘Another proof of a result of Westwick’, Linear and Multilinear Algebra 9 (1980), 3537.Google Scholar
[19]Raïs, M., ‘Remarques sur un theorem de R. Westwick’, unpublished manuscript.Google Scholar
[20]Tam, T. Y., ‘Kostant's convexity theorem and classical compact groups’, Linear and Multilinear Algebra 43 (1997), 87113.Google Scholar
[21]Toeplitz, O., ‘Das algebraische Analogon zu einem Satze von Fejér’, Math. Z. 2 (1918), 187197.Google Scholar
[22]Westwick, R., ‘A theorem on numerical range’, Linear and Multilinear Algebra 2 (1975), 311315.Google Scholar