Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T11:51:54.587Z Has data issue: false hasContentIssue false

A decomposition of integer vectors. IV

Published online by Cambridge University Press:  09 April 2009

A. Schinzel
Affiliation:
Instytut Matematyczny Polskiej Akademii Nauk ul. Sniadeckich8 Skrytka pocztowa Nr 137 00–950 Warszawa Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given m linearly independent vectors n1,…, nmzk and an integer l ∈ [m, k] one proves the existence of / linearly independent vectors P1,…, P1Zk or q1 ∈ Zk of small size (suitably measured) such that the ni's are linear combinations of pj's with rational coefficients or of qj's with integer coefficients.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Bombieri, E. and Vaaler, J. D., ‘On Siegel's lemma’, Invent Math. 73 (1983), 1132.CrossRefGoogle Scholar
[2]Chaladus, S. and Teterin, Yu., ‘Note on a decomposition of integer vectors, II’, Acta Arith., to appear.Google Scholar
[3]Châtelet, A., Leçons sur la théorie des nombres, Paris, 1913.Google Scholar
[4]Dvoretzky, A. and Rogers, C. A., ‘Absolute and unconditional convergence in normed linear spaces’, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 192197.CrossRefGoogle ScholarPubMed
[5]Farkas, J., ‘Über die Theorie der einfachen Ungleichungen’, J. Reine Angew. Math. 124 (1902), 127.Google Scholar
[6]Gruber, P. M. and Lekkerkerker, C. G., Geometry of numbers, Amsterdam, 1987.Google Scholar
[7]John, F., ‘Extremum problems with inequalities as subsidiary conditions’, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187204, New York, 1948.Google Scholar
[8]Minkowski, H., Geometrie der Zahlen, Leipzig 1896, reprint New York, 1953.Google Scholar
[9]Pelczyński, A. and Szarek, S. J., ‘On parallelopipeds of minimal volume containing a convex symmetric body in Rn’, Math. Proc. Cambridge Philos. Soc., to appear.Google Scholar
[10]Schinzel, A., ‘A decomposition of integer vectors III’, Bull. Polish Acad. Sci. Math. 35 (1987), 693703.Google Scholar