Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T15:41:49.875Z Has data issue: false hasContentIssue false

Developable surfaces in Euclidean space

Published online by Cambridge University Press:  09 April 2009

Vitaly Ushakov
Affiliation:
Department of Mathematics, The University of Melbourne, Parkville VIC 3052, Australia e-mail: v.ushakov@ms.unimelb.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The classical notion of a two-dimensional develpable surface in Euclidean three-space is extended to the case of arbitrary dimension and codimension. A collection of characteristic properties is presented. The theorems are stated with the minimal possible integer smoothness. The main tool of the investigation is Cartan's moving frame method.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[A]Akivis, M. A., ‘Focal images of surfaces of rank’, Izv. Vyssh. Uchebn. Zaved. Mat. 9 (1957), 919 (Russian).Google Scholar
[AR]Akivis, M. A. and Ryzhkov, V. V., Many-dimensional surfaces of special projective types, Proceedings of IV all-union mathematical congress 2 (1964) pp. 159164 (Russian).Google Scholar
[B]Borisenko, A. A., ‘On complete parabolic surfaces in Euclidean space’, Ukrain. Geom. Sb. 28 (1985), 819 (Russian).Google Scholar
[BSh]Burago, Yu. D. and Shefel, S. Z., ‘The geometry of surfaces in Euclidean spaces’, in: Itogi Nauki i Tekhniki, Sovremennye problemy matematiki, Fundamental'nye napravlenia (eds. Burago, Yu. D. and Zalgaller, V. A.), Geometriya 3 48 (VTNITI, Moscow, 1989) pp. 185.Google Scholar
English transl. Encyclopedia of Mathematical Sciences, vol. 48, Geometry 3 (Springer, 1992) 185.Google Scholar
[CK]Chern, S. S. and Kuiper, N. H., ‘Some theorems onthe isometric imbedding of compact Riemannian manifolds in Euclidean space’, Ann. of Math. 50 (1952), 422430.CrossRefGoogle Scholar
[DG]Dajczer, M. and Gromoll, D., ‘Rigidity of complete Euclidean hypersurfaces’, J. Diff. Geom. 31 (1990), 401416.Google Scholar
[FW]Fischer, G. and Wu, H., ‘Developable complex analytic submanifolds’, Internat. J. Math. 6 (1995), 229272.CrossRefGoogle Scholar
[H]Hartman, P., ‘On isometric immersions in Euclidean space of manifolds with non-negative sectional curvatures’, Trans. Amer. Math. Soc. 115 (1965), 94109.CrossRefGoogle Scholar
[HN]Hartman, P. and Nirenberg, L., ‘On spherical image maps whose Jacobians do not change sign’, Amer. J. Math. 81 (1959), 901920.CrossRefGoogle Scholar
[HW1]Hartman, P. and Winter, A., ‘On the fundamental equations of differential geometry’, Amer. J. Math. 72 (1950), 757774.CrossRefGoogle Scholar
[HW2]Hartman, P. and Winter, A., ‘On the asymptotic curves of a surface’, Amer. J. Math. 73 (1951), 149172.CrossRefGoogle Scholar
[HC]Hilbert, D. and Cohn-Vossen, S., Geometry and the imagination (Chelsea Publishing Company, New York, 1952).Google Scholar
[KN]Kobayashi, S. and Nomizu, K., Foundations of differential geometry vol.2 (Interscience Publishers Inc., New York, 1969).Google Scholar
[R]Ryzhkov, V. V., ‘On tangentially degenerate surfaces’, Dokl. Akad. Nauk SSSR 135 (1960) pp. 2022 (Russian).Google Scholar
[Se]Segre, C., ‘Su una classe di superficie degl'iperspazî, legata colle equazioni lineari alle derivate parziali di 20 ordine’, Atti Acad. Torino 42 (1907), 559591 (Italian).Google Scholar
[Sh]Shefel, S. Z.', ‘Geometric properties of embeded manifolds’, Sibirsk. Mat. Zh. 26 (1985), 170188;Google Scholar
English transl. Siberian Math. J. 26 (1985), 133147.Google Scholar
[Sp1]Spivak, M., A comprehensive introduction to differential geometry vol. III (Publish or Perish, Inc., Berkeley, 1979).Google Scholar
[Sp2]Spivak, M., A comprehensive introduction to differential geometry vol. IV (Publish or Perish, Inc., Berkeley, 1979).Google Scholar
[Sp3]Spivak, M., A comprehensive introduction to differential geometry vol. V (Publish or Perish, Inc., Berkeley, 1979).Google Scholar
[TSh]Toponogov, V. A. and Shefel, S. Z., ‘Geometry of immersed manifolds’, in: Encyclopaedia of Mathematics, 4 (Kluwer Academic Publ., Amsterdam, 1993) pp. 264267.Google Scholar
[U1]Ushakov, V., Riemannian manifolds and surfaces of constant nullity (Ph.D. Thesis, St.-Petersburg University, 1993), (Russian).Google Scholar
[U2]Ushakov, V., ‘Parametrization of developable surfaces by asymptotic lines’, Bull. Austral. Math. Soc. 54 (1996), 411421.CrossRefGoogle Scholar
[U3]Ushakov, V., ‘Smoothness of the solution of trivial Monge-Ampère equation’, Bull. Austral. Math. Soc. 56 (1997), 439445.CrossRefGoogle Scholar
[W]Wu, H., ‘Complete developable submanifolds in real and complex spaces’, Internat. J. Math. 6 (1995), 461489.CrossRefGoogle Scholar
[Ya1]Yanenko, N. N., ‘The geometric structure of surfaces of small type’, Dokl. Akad. Nauk SSSR (N. S.) 64 (1949), 641644 (Russian).Google Scholar
[Ya2]Yaneko, N. N., ‘Some questions of the theory of imbedding of Riemannian metrics in Euclidean spaces’, Uspekhi Matem. Nauk (N. S.) 8 (1953), 21100 (Russian).Google Scholar