Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T05:45:46.105Z Has data issue: false hasContentIssue false

ESTIMATES FOR SINGULAR INTEGRALS ALONG SURFACES OF REVOLUTION

Published online by Cambridge University Press:  01 June 2009

SHUICHI SATO*
Affiliation:
Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan (email: shuichi@kenroku.kanazawa-u.ac.jp)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove certain Lp estimates (1<p<) for nonisotropic singular integrals along surfaces of revolution. The singular integrals are defined by rough kernels. As an application we obtain Lp boundedness of the singular integrals under a sharp size condition on their kernels. We also prove a certain estimate for a trigonometric integral, which is useful in studying nonisotropic singular integrals.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2009

References

[1]Al-Salman, A. and Pan, Y., ‘Singular integrals with rough kernels in Llog L(S n−1)’, J. London Math. Soc. (2) 66 (2002), 153174.CrossRefGoogle Scholar
[2]Calderón, A. P. and Torchinsky, A., ‘Parabolic maximal functions associated with a distribution’, Adv. Math. 16 (1975), 164.Google Scholar
[3]Calderón, A. P. and Zygmund, A., ‘On singular integrals’, Amer. J. Math. 78 (1956), 289309.Google Scholar
[4]Coddington, E. A., An Introduction to Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1961).Google Scholar
[5]Duoandikoetxea, J. and Rubio de Francia, J. L., ‘Maximal and singular integral operators via Fourier transform estimates’, Invent. Math. 84 (1986), 541561.Google Scholar
[6]Fan, D. and Pan, Y., ‘Singular integral operators with rough kernels supported by subvarieties’, Amer. J. Math. 119 (1997), 799839.Google Scholar
[7]Fefferman, R., ‘A note on singular integrals’, Proc. Amer. Math. Soc. 74 (1979), 266270.Google Scholar
[8]Friedberg, S., Insel, A. and Spence, L., Linear Algebra (Prentice-Hall, Englewood Cliffs, NJ, 1979).Google Scholar
[9]Hofmann, S., ‘Weighted norm inequalities and vector valued inequalities for certain rough operators’, Indiana Univ. Math. J. 42 (1993), 114.Google Scholar
[10]Kim, W., Wainger, S., Wright, J. and Ziesler, S., ‘Singular integrals and maximal functions associated to surfaces of revolution’, Bull. London Math. Soc. 28 (1996), 291296.Google Scholar
[11]Nagel, A. and Wainger, S., ‘L 2 boundedness of Hilbert transforms along surfaces and convolution operators homogeneous with respect to a multiple parameter group’, Amer. J. Math. 99 (1977), 761785.Google Scholar
[12]Namazi, J., ‘On a singular integral’, Proc. Amer. Math. Soc. 96 (1986), 421424.Google Scholar
[13]Rivière, N., ‘Singular integrals and multiplier operators’, Ark. Mat. 9 (1971), 243278.Google Scholar
[14]Sato, S., ‘Estimates for singular integrals and extrapolation’, Studia Math. 192 (2009), 219233.Google Scholar
[15]Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals (Princeton University Press, Princeton, NJ, 1993).Google Scholar
[16]Stein, E. M. and Wainger, S., ‘The estimation of an integral arising in multiplier transformations’, Studia Math. 35 (1970), 101104.Google Scholar
[17]Stein, E. M. and Wainger, S., ‘Problems in harmonic analysis related to curvature’, Bull. Amer. Math. Soc. 84 (1978), 12391295.Google Scholar
[18]Zygmund, A., Trigonometric Series, 2nd edn (Cambridge University Press, Cambridge, 1977).Google Scholar