Article contents
EXISTENCE OF POSITIVE SOLUTION FOR INDEFINITE KIRCHHOFF EQUATION IN EXTERIOR DOMAINS WITH SUBCRITICAL OR CRITICAL GROWTH
Published online by Cambridge University Press: 23 December 2016
Abstract
Using variational methods and depending on a parameter $\unicode[STIX]{x1D706}$ we prove the existence of solutions for the following class of nonlocal boundary value problems of Kirchhoff type defined on an exterior domain
$\unicode[STIX]{x1D6FA}\subset \mathbb{R}^{3}$:
$$\begin{eqnarray}\left\{\begin{array}{@{}ll@{}}M(\Vert u\Vert ^{2})[-\unicode[STIX]{x1D6E5}u+u]=\unicode[STIX]{x1D706}a(x)g(u)+\unicode[STIX]{x1D6FE}|u|^{4}u\quad & \text{in }\unicode[STIX]{x1D6FA},\\ u=0\quad & \text{on }\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA},\end{array}\right.\end{eqnarray}$$
$\unicode[STIX]{x1D6FE}=0$) and also for the critical case (
$\unicode[STIX]{x1D6FE}=1$).
- Type
- Research Article
- Information
- Journal of the Australian Mathematical Society , Volume 103 , Issue 3 , December 2017 , pp. 329 - 340
- Copyright
- © 2016 Australian Mathematical Publishing Association Inc.
Footnotes
The first author was partially supported by PROCAD/CASADINHO: 552101/2011-7 and CNPq/PQ 301242/2011-9; the second author was partially supported by PROCAD/Casadinho: 552.464/2011-2 and FNDE-PET/BRAZIL.
References
- 5
- Cited by