Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T21:05:51.206Z Has data issue: false hasContentIssue false

Extension of Riesz homomorphisms.I

Published online by Cambridge University Press:  09 April 2009

G. J. H. M. Buskes
Affiliation:
School of Mathematical SciencesThe Flinders University of South AustraliaBedford Park, S.A. 5042, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we characterize boundedly laterally complete Riesz spaces, boundedly laterally complete Riesz spaces with the lateral boundedness property and Riesz spaces in which every principal ideal is finite dimensional. The characterizations are given in terms of extension properties of certain Riesz homomorphisms.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Aliprantis, C. D. and Burkinshaw, O., Locally solid Riesz spaces, (Academic Press, New York, San Francisco, London, 1978).Google Scholar
[2]Bernau, S. J., ‘Lateral and Dedekind completion of Archimedean lattice groups’, J. London Math. Soc. 12 (1976), 320322.CrossRefGoogle Scholar
[3]Buskes, Gerard, Extension of Riesz homomorphisms, Thesis 1983, University of Nijmegen, The Netherlands.Google Scholar
[4]Cartwright, D. I., ‘Extensions of positive operators between Banach lattices’, Mem. Amer. Math. Soc. 122 (1966 II), 277288.Google Scholar
[5]Donner, Klaus, Extensions of positive operators and Korovkin theorems, (Lecture Notes in Math. 904, Springer Verlag, Berlin-Heidelberg-New York, 1982).CrossRefGoogle Scholar
[6]Fremlin, D. H., Topological Riesz spaces and measure theory, (Cambridge Univ. Press, London, New York, 1974).CrossRefGoogle Scholar
[7]Fremlin, D. H., ‘A direct proof of the Mathes-Wright integral extension theorem’, J. London Math. Soc. (2) 11 (1975), 276284.CrossRefGoogle Scholar
[8]Fremlin, D. H., ‘Inextensible Riesz spaces’, Math. Proc. Cambridge Philos. Soc. 77 (1975), 7189.CrossRefGoogle Scholar
[9]Haydon, R., ‘Injective Banach lattices’, Math. Z. 156 (1977), 1947.CrossRefGoogle Scholar
[10]Huijsmans, C. B., ‘Riesz spaces for which every ideal is a projection band’, Proc. Netherl. Acad. Sci. A 79 (1976), 3035.Google Scholar
[11]de Jonge, E. and van Rooij, A. C. M., Introduction to Riesz spaces, (Math. Centre Tracts 78, Math. Centrum, Amsterdam, 1977).Google Scholar
[12]Iantorovitch, L. V., ‘Concerning the problem of moments for a finite interval’, Dokl. Akad. Nauk SSSR 14 (1937), 531536.Google Scholar
[13]Lipecki, Z., ‘Extension of vector lattice homomorphisms’, Proc. Amer. Math. Soc. 79 (1980), 247248.CrossRefGoogle Scholar
[14]Lotz, H. P., ‘Extensions and liftings of positivep linear mappings’, Trans. Amer. Math. Soc. 211 (1975 XI), 85100.CrossRefGoogle Scholar
[15]Luxemburg, W. A. J. and Zaanen, A. C., Riesz spaces I, (North-Holland Publishing Company, Amsterdam, London, 1971).Google Scholar
[16]Luxemburg, W. A. J. and Schep, A. R., ‘An extension theorem for Riesz homomorphisms’, Indag. Math. 41 (1979), 145154.CrossRefGoogle Scholar
[17]de Pagter, B., f-algebras and orthomorphisms, Thesis, 1981, University of Leiden, Holland.Google Scholar
[18]Peressini, A. L., Ordered topological vector spaces, (Harper & Row, New York, 1967).Google Scholar
[19]Riedl, John, ‘Partially ordered locally convex vector spaces and extensions of positive continuous linear mappings’, Math. Ann. 157 (1964/1965), 95124.CrossRefGoogle Scholar
[20]Veksler, A. I. and Geiler, V. A., ‘Order and disjoint completeness of linear partially ordered spaces’, Siberian Math. J. 13 (1972), 3035.CrossRefGoogle Scholar
[21]Wickstead, Anthony W., ‘Extensions of orthomorphisms’, J. Austral. Math. Soc. Ser. A 29 (1980), 8798.CrossRefGoogle Scholar
[22]Willard, Stephen, General topology, (Addison-Wesley Publishing Company, Reading, Massachussetts, Menlo Park, California, London, Don Mills, Ontario, 1970).Google Scholar
[23]Zaanen, A. C., ‘The universal completion of an Archimedean Riesz space’, Proc. Netherl. Acad. Sci. A (4) 86 (1983), 435441.Google Scholar