No CrossRef data available.
Published online by Cambridge University Press: 26 January 2022
A noncomplete graph is $2$ -distance-transitive if, for $i \in \{1,2\}$ and for any two vertex pairs $(u_1,v_1)$ and $(u_2,v_2)$ with the same distance i in the graph, there exists an element of the graph automorphism group that maps $(u_1,v_1)$ to $(u_2,v_2)$ . This paper determines the family of $2$ -distance-transitive Cayley graphs over dihedral groups, and it is shown that if the girth of such a graph is not $4$ , then either it is a known $2$ -arc-transitive graph or it is isomorphic to one of the following two graphs: $ {\mathrm {K}}_{x[y]}$ , where $x\geq 3,y\geq 2$ , and $G(2,p,({p-1})/{4})$ , where p is a prime and $p \equiv 1 \ (\operatorname {mod}\, 8)$ . Then, as an application of the above result, a complete classification is achieved of the family of $2$ -geodesic-transitive Cayley graphs for dihedral groups.
Communicated by Brian Alspach
Supported by the NNSF of China (12061034,12071484) and NSF of Jiangxi (20212BAB201010,20192ACBL21007,GJJ190273)